Collaborative Research: SaTC: CORE: Small: Analytical Models for Conversational Social Engineering Attacks

协作研究:SaTC:核心:小型:对话式社会工程攻击的分析模型

基本信息

  • 批准号:
    2319803
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Social engineers use a false pretense and their interpersonal skills to persuade their targets to divulge sensitive information such as their usernames, passwords, or credit card numbers. Social engineering over the phone, known as vishing, is a very common, growing, and costly problem. This project aims to investigate the nature of vishing attacks and use what is learned to develop a software application that detects key vishing attack features, moving the project toward its long-term goal of developing a software system that can detect vishing attacks in real-time and warn targets.To accomplish that aim, the research team is creating two corpora: 1) a set of vishing attack recordings and 2) a set of legitimate phone call recordings. The research team is developing advanced analytical techniques to identify features that differentiate vishing conversations from legitimate conversations. The research team is developing novel audio signal and natural language processing algorithms to detect emotional language that is unique to vishing conversations and novel natural language processing algorithms to detect requests for sensitive information. Collectively, these algorithms provide critical capabilities to detect vishing attacks in real-time and form the foundation of the real-time vishing attack warning system the research team is developing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会工程师使用虚假的假装和人际交往能力来说服他们的目标泄露敏感信息,例如其用户名,密码或信用卡号。 通过电话被称为Vishing的社会工程是一个非常普遍,成长且昂贵的问题。 This project aims to investigate the nature of vishing attacks and use what is learned to develop a software application that detects key vishing attack features, moving the project toward its long-term goal of developing a software system that can detect vishing attacks in real-time and warn targets.To accomplish that aim, the research team is creating two corpora: 1) a set of vishing attack recordings and 2) a set of legitimate phone call recordings. 研究团队正在开发先进的分析技术,以确定将捕钓对话与合法对话区分开的功能。研究团队正在开发新颖的音频信号和自然语言处理算法,以检测情感语言,这些语言在诱捕对话和新型的自然语言处理算法中独有,以检测请求敏感信息。 总的来说,这些算法提供了实时检测捕钓攻击的关键能力,并构成了研究团队正在开发的实时Vishing攻击警告系统的基础。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Faranak Abri其他文献

Detecting Phishing URLs using the BERT Transformer Model
使用 BERT Transformer 模型检测网络钓鱼 URL
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Denish Omondi Otieno;Faranak Abri;A. Namin;Keith S. Jones
  • 通讯作者:
    Keith S. Jones
A Comparison of TCN and LSTM Models in Detecting Anomalies in Time Series Data
TCN 和 LSTM 模型在检测时间序列数据异常方面的比较
Classifying Perceived Emotions based on Polarity of Arousal and Valence from Sound Events
根据声音事件的唤醒极性和效价对感知情绪进行分类
The Accuracy of Domain Specific and Descriptive Analysis Generated by Large Language Models
大型语言模型生成的领域特定和描述性分析的准确性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Denish Omondi Otieno;Faranak Abri;Sima Siami‐Namini;A. Namin
  • 通讯作者:
    A. Namin
Fake Reviews Detection through Ensemble Learning
通过集成学习检测虚假评论
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luis Gutiérrez;Faranak Abri;A. Namin;Keith S. Jones;David R. W. Sears
  • 通讯作者:
    David R. W. Sears

Faranak Abri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了