CyberTraining: Pilot: Machine Learning Foundations and Applications in the Earth Systems Sciences
网络培训:试点:地球系统科学中的机器学习基础和应用
基本信息
- 批准号:2319979
- 负责人:
- 金额:$ 29.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The increasing use of machine learning techniques in Earth Systems Science (ESS) has positive impacts on science and engineering research, but ease of use coupled with the opaque nature of many commonly available tools can lead to trust without critical assessment of the tools' outputs. Education surrounding the theoretical underpinnings of machine learning tools requires additional, and often substantive, coursework in advanced math and programming. Cyberinfrastructure users without access to this background information may have difficulty building an appreciation and understanding of the utility and appropriateness of machine learning technology for their research and career goals, especially when they attend under-resourced institutions that cannot create relevant educational materials on their own. This project intends to help university-level learners build necessary cyberinfrastructure literacy and skills that will allow them to appropriately apply machine learning techniques to their ESS research without requiring prohibitive additional coursework. These future cyberinfrastructure users benefit from practicing appropriate and ethical usage of machine learning techniques even when the tools in use were developed by others. The goals of this project are to elucidate the conceptual mechanisms behind machine learning models for university-level ESS students and early-career professionals, and to bridge the gap between machine learning concepts and low-code, real-world applications in the Earth Systems Sciences. It will accomplish this by providing a series of three learning modules: (1) a self-paced conceptual introduction that uses a systems-thinking approach to understanding how machine learning works in ESS, (2) a self-paced, low-code module that enables learners to apply the conceptual frameworks to real world scenarios with relevant ESS data, and (3) a lab-based activity that promotes group discussion, justification of decision making, and critical analysis of machine learning techniques and outputs. This design lends itself well to a flipped classroom setting integrated with existing curricula, allowing learners to practice these skills without the need to take on additional coursework. Additionally, the program fosters critical judgment skills in ESS cyberinfrastructure users, furthering the broad, strategic, ethical, and appropriate usage of cyberinfrastructure and machine learning.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Directorate for Geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在地球系统科学(ESS)中越来越多地使用机器学习技术对科学和工程研究产生了积极的影响,但是易用性加上许多常用工具的不透明性质可能导致信任,而没有对工具的输出进行批判性评估。围绕机器学习工具的理论基础的教育需要额外的、通常是实质性的高等数学和编程课程。无法获得这些背景信息的网络基础设施用户可能难以欣赏和理解机器学习技术对其研究和职业目标的实用性和适当性,特别是当他们就读于资源不足且无法自行创建相关教育材料的机构时。该项目旨在帮助大学水平的学习者建立必要的网络基础设施素养和技能,使他们能够将机器学习技术适当地应用于他们的ESS研究,而不需要额外的课程。这些未来的网络基础设施用户受益于适当和道德地使用机器学习技术,即使使用的工具是由其他人开发的。该项目的目标是为大学水平的ESS学生和早期职业专业人员阐明机器学习模型背后的概念机制,并弥合机器学习概念与地球系统科学中低代码、实际应用之间的差距。它将通过提供一系列三个学习模块来实现这一目标:(1)一个自定节奏的概念介绍,使用系统思维方法来理解机器学习在ESS中的工作原理;(2)一个自定节奏的低代码模块,使学习者能够将概念框架应用于具有相关ESS数据的现实世界场景;(3)一个基于实验室的活动,促进小组讨论,决策论证,以及对机器学习技术和输出的批判性分析。这种设计很适合与现有课程相结合的翻转课堂设置,允许学习者在不需要额外课程的情况下练习这些技能。此外,该计划还培养ESS网络基础设施用户的关键判断技能,促进网络基础设施和机器学习的广泛、战略、道德和适当使用。该奖项由先进网络基础设施办公室颁发,并得到地球科学理事会的联合支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Corbin其他文献
Interprofessional Collaboration Competency Attainment Through SilverScripts, a Collaborative Program With Community Senior Centers
- DOI:
10.1016/j.ajpe.2023.100227 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:
- 作者:
Sophia Herbert;Nicole Corbin;Elizabeth Mulvaney;Caroline Passerrello - 通讯作者:
Caroline Passerrello
Nicole Corbin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320148 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Operationalizing AI/Machine Learning for Cybersecurity Training
合作研究:网络培训:试点:将人工智能/机器学习应用于网络安全培训
- 批准号:
2229976 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Operationalizing AI/Machine Learning for Cybersecurity Training
合作研究:网络培训:试点:将人工智能/机器学习应用于网络安全培训
- 批准号:
2229975 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320147 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: A Cybertraining Program to Advance Data Acquisition, Processing, and Machine Learning-based Modeling in Marine Science
合作研究:网络培训:试点:一项网络培训计划,旨在推进海洋科学中的数据采集、处理和基于机器学习的建模
- 批准号:
2230046 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
MCA Pilot PUI: Leveraging machine learning to better understand biodiversity patterns measured through passive acoustic sampling
MCA Pilot PUI:利用机器学习更好地了解通过被动声学采样测量的生物多样性模式
- 批准号:
2322350 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Operationalizing AI/Machine Learning for Cybersecurity Training
合作研究:网络培训:试点:将人工智能/机器学习应用于网络安全培训
- 批准号:
2309760 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Using Machine Learning to train a Digital Test Pilot for missions in turbulent environments
使用机器学习训练数字试飞员在动荡的环境中执行任务
- 批准号:
2748750 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Studentship
Development of new paper grades from SEPF using a pilot paper machine
SEPF 使用中试造纸机开发新纸种
- 批准号:
507207-2016 - 财政年份:2021
- 资助金额:
$ 29.91万 - 项目类别:
Applied Research and Development Grants - Level 2
Development of novel food packaging made from modified wood pulps using a pilot pulp thermoforming machine
使用中试纸浆热成型机开发由改性木浆制成的新型食品包装
- 批准号:
519854-2017 - 财政年份:2020
- 资助金额:
$ 29.91万 - 项目类别:
Applied Research and Development Grants - Level 2