EAGER: Causal Analysis through Formal Reasoning and AI for Cancer Diagnostics
EAGER:通过形式推理和人工智能进行癌症诊断的因果分析
基本信息
- 批准号:2320050
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientific investigations have two purposes: (1) discovering previously unknown associations between a natural phenomenon, and (2) generating precise mechanistic explanations for how the phenomena are causally related. Among these two, explanation is the most critical to achieve global impact. Identifying the cause of natural phenomena not only enables us to predict their future occurrences, but also implies the means in which we may prevent or treat such events (e.g., the effect of genetic mutations on development of cancer). This is particularly true in the medical domain, where erroneous treatments can result in catastrophic consequences. Indeed, the medical domain mainly focuses on identifying correlations rather than causation. Such root-cause analysis and causality-based predictive modeling are critically needed for more accurate diagnosis and the timely selection of an appropriate type of therapy. The project's novelties and impact are designing techniques by combining automated formal reasoning and artificial intelligence (AI) to discover the causal relation between events to answer deep questions on real causes of certain medical conditions.The project builds a prominent infrastructure for collecting preliminary data and designing proof of concept techniques that demonstrate the viability of this project’s approach based on formal reasoning and AI to extract causal structures in health and medical domains. The project first investigates two different notions of causality (Halpern-Pearl and Granger) and explores their fitness in the medical domain. Then, the project reduces the problem of extracting causal structures to decision procedures that solve certain problems on automated reasoning. To this end, the project utilizes off-the-shelf decision procedures for solving the satisfiability problem for quantified Boolean formulas (QBF) and satisfiability modulo theory (SMT). In the probabilistic and predictive settings, the project incorporates model checkers for probabilistic systems to reason about models generated from medical data and Granger/probabilistic causality. Finally, in order to tackle the scalability issues in automated formal reasoning about causality, the project combines the developed techniques with AI, and augments AI with formal reasoning during the training phase.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学研究有两个目的:(1)发现自然现象之间以前未知的联系,(2)对这些现象之间的因果关系做出精确的机械解释。在这两者中,解释是实现全球影响力的最关键因素。确定自然现象的原因不仅使我们能够预测其未来的发生,而且还意味着我们可以预防或处理此类事件的方法(例如,基因突变对癌症发展的影响)。在医疗领域尤其如此,错误的治疗可能导致灾难性的后果。事实上,医学领域主要关注的是识别相关性,而不是因果关系。这种根本原因分析和基于空洞的预测建模对于更准确的诊断和及时选择适当类型的治疗是至关重要的。该项目的新颖性和影响是通过将自动化形式推理和人工智能(AI)相结合来设计技术发现事件之间的因果关系,以回答某些医疗条件的真实的原因的深层问题。该项目建立了一个突出的基础设施,用于收集初步数据和设计概念技术的证明,证明该项目基于形式推理和人工智能的方法的可行性,以提取健康和医疗领域的因果结构。该项目首先调查了两种不同的因果关系概念(Halpern-Pearl和格兰杰),并探讨了它们在医学领域的适用性。然后,该项目将提取因果结构的问题简化为解决自动推理中某些问题的决策过程。为此,该项目利用现成的决策程序来解决量化布尔公式(QBF)和可满足性模理论(SMT)的可满足性问题。在概率和预测设置中,该项目结合了概率系统的模型检查器,以推理从医疗数据和格兰杰/概率因果关系生成的模型。最后,为了解决因果关系自动化形式推理的可扩展性问题,该项目将开发的技术与人工智能相结合,并在培训阶段通过形式推理增强人工智能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Borzoo Bonakdarpour其他文献
First International Competition on Software for Runtime Verification
第一届运行时验证软件国际竞赛
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
E. Bartocci;Borzoo Bonakdarpour;Yliès Falcone - 通讯作者:
Yliès Falcone
Parallelizing Deadlock Resolution in Symbolic Synthesis of Distributed Programs
分布式程序符号综合中的并行化死锁解决
- DOI:
10.4204/eptcs.14.7 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Fuad Abujarad;Borzoo Bonakdarpour;S. Kulkarni - 通讯作者:
S. Kulkarni
Probabilistic Hyperproperties with Nondeterminism
具有非确定性的概率超性质
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
E. Ábrahám;E. Bartocci;Borzoo Bonakdarpour;Oyendrila Dobe - 通讯作者:
Oyendrila Dobe
Distributed runtime verification of metric temporal properties
- DOI:
10.1016/j.jpdc.2023.104801 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:
- 作者:
Ritam Ganguly;Yingjie Xue;Aaron Jonckheere;Parker Ljung;Benjamin Schornstein;Borzoo Bonakdarpour;Maurice Herlihy - 通讯作者:
Maurice Herlihy
Sampling-Based Runtime Verification
基于采样的运行时验证
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Borzoo Bonakdarpour;Samaneh Navabpour;S. Fischmeister - 通讯作者:
S. Fischmeister
Borzoo Bonakdarpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Borzoo Bonakdarpour', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Small: Hyperproperty-based Enforcement of Information-flow Security
协作研究:SaTC:核心:小型:基于超产权的信息流安全执行
- 批准号:
2245114 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Runtime Verification at the Edge
合作研究:SHF:小型:边缘运行时验证
- 批准号:
2118356 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Techniques for Software Model Checking of Hyperproperties
SaTC:核心:小型:超属性软件模型检查技术
- 批准号:
2100989 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FMitF:Collaborative Research:Track I:Formal Techniques for Monitoring Low-level Cross-chain Functions
FMITF:合作研究:第一轨:监控低级跨链功能的形式化技术
- 批准号:
2102106 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FMitF:Collaborative Research:Track I:Formal Techniques for Monitoring Low-level Cross-chain Functions
FMITF:合作研究:第一轨:监控低级跨链功能的形式化技术
- 批准号:
1917979 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Techniques for Software Model Checking of Hyperproperties
SaTC:核心:小型:超属性软件模型检查技术
- 批准号:
1813388 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
- 批准号:
2337612 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
How do mental and physical health problems contribute to inequalities in persistent school absence? A causal mediation analysis using ECHILD
精神和身体健康问题如何导致持续缺课带来的不平等?
- 批准号:
ES/Z502509/1 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Fellowship
Clarification of causal gene and flowering pathway of everbearing garden strawberry by eGWAS analysis
通过eGWAS分析阐明常生花园草莓的致病基因和开花途径
- 批准号:
23H02201 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Causal survival analysis with missing data in time-varying confounders
时变混杂因素中缺失数据的因果生存分析
- 批准号:
23K11017 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model-Based and Design-Based Approaches to Longitudinal Causal Decomposition Analysis
基于模型和设计的纵向因果分解分析方法
- 批准号:
2243119 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Constructing Causal Models Through Path Analysis of Psychological Factors: Focusing on the English Proficiency of Non-English Majors
通过心理因素路径分析构建因果模型——以非英语专业学生英语水平为中心
- 批准号:
23K00660 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Effect of stage at diagnosis, treatment, and physical comorbidities on mortality following cancer diagnosis among people with non-affective psychotic disorders: A causal mediation analysis
诊断、治疗和身体合并症的分期对非情感性精神障碍患者癌症诊断后死亡率的影响:因果中介分析
- 批准号:
495238 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
AI-Powered Uncovering of Mechanisms in Cancer Through Causal Discovery Analysis and Generative Modeling of Heterogeneous Data
人工智能通过因果发现分析和异构数据生成模型揭示癌症机制
- 批准号:
10581180 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Factor analysis of the formation process of motivation to exercise based on statistical causal search
基于统计因果搜索的运动动机形成过程因子分析
- 批准号:
23K10794 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




