SCIPE: Chishiki.ai: A sustainable, diverse, and integrated CIP community for Artificial Intelligence in Civil and Environmental Engineering

SCIPE:Chishiki.ai:土木与环境工程人工智能的可持续、多元化和综合 CIP 社区

基本信息

  • 批准号:
    2321040
  • 负责人:
  • 金额:
    $ 699.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Chishiki.ai is an integrated community of CI professionals (CIPs) across artificial intelligence (AI) and civil and environmental engineering (CEE) practices to bolster U.S. infrastructure, aligning with thrust areas identified by the 2020 National Artificial Intelligence Initiative Act and the 2022 Infrastructure Investment and Jobs Act. THe Chishiki project adopts four strategies to build a sustainable, diverse, and integrated community of CI professionals for AI in CEE by (1) fostering collaboration between CIPs and domain experts through initiatives such as research summits, graduate and undergraduate fellowships, joint research initiatives, and industrial partnerships; (2) offering personalized and scalable learning environments powered by AI; (3) developing innovative AI-enabled CI architectures for reproducible and efficient workflows; and (4) creating a diverse, sustainable CIP community through engagement with historically underrepresented institutions through recruitment and research initiatives. Chishiki offers peer mentoring support and works with the NSF ACCESS Computational Science Support Network (CSSN) to support CI professionals in research activities related to CI and CEE. The integration of CIPs into CEE research is enabled through an active community of practice, providing opportunities for professional development, collaboration, and well-being. The project will publish best practices on partnerships, broadening adoption, and democratizing access to CI solutions in CEE. Chishiki offers AI-enhanced CI solutions and supports an integrated and diverse CIP community dedicated to transforming Civil and Environmental Engineering.Through Chishiki.ai, the project develops new courses for CI professionals to build and support sophisticated CI frameworks that foster AI-driven research innovations. The courses on AI4CI and CI4AI cover AI-enabled programming, AI-enhanced performance tuning of High-Performance Computing (HPC) systems, AI-driven knowledge discovery and curation, and building large-scale production-ready AI systems. The course on Scientific Machine Learning explores techniques for explainable AI, differentiable programming, and uncertainty propagation, thus enabling CI professionals to understand the need and use of AI in CEE. The Chishiki project develops a novel, scalable learning environment by building context-aware Large Language Models through reinforcement learning to generate personalized quizzes and explanations. The personalized AI tutor facilitates generating individualized quizzes and customized explanations to suit the individual's needs and learning abilities. The scalable and personalized AI tutor-powered courses will be available as open-access content on the Cornell Virtual Workshop (CVW) learning platform, reaching a broad community of CIPs. To accelerate AI-enhanced research, the project supports the development of sophisticated AI surrogates based on graph neural networks and differentiable simulations for optimization and engineering design, develops frameworks to deploy foundational AI models on memory-limited edge devices for structural health monitoring and transportation planning, and HPC systems to develop exemplar applications of AI-enabled CEE. The Chishiki project also supports AI-assisted code development to accelerate scientific research. The project's deliverables will be available on existing NSF-funded platforms, DesignSafe and the Texas Advanced Computing Center (TACC), broadening the adoption and integration of AI-enhanced CI innovations. The developments will be publicly accessible as open-course content and open-source solutions for broader dissemination. The project goal is to benefit more than 500 CIPs nationwide and to train more than 300,000 users worldwide through this personalized and scalable learning platform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Chishiki。ai是一个由人工智能(ai)和土木与环境工程(CEE)实践领域的CI专业人员(cip)组成的综合社区,旨在加强美国的基础设施,与2020年《国家人工智能倡议法案》和2022年《基础设施投资与就业法案》确定的重点领域保持一致。chichiki项目采用四种策略,通过以下方式在中东欧地区建立一个可持续、多样化和一体化的人工智能CI专业社区:(1)通过研究峰会、研究生和本科生奖学金、联合研究计划和产业伙伴关系等举措,促进cip与领域专家之间的合作;(2)提供由人工智能驱动的个性化和可扩展的学习环境;(3)开发创新的支持ai的CI架构,以实现可复制和高效的工作流程;(4)通过招聘和研究活动,与历史上代表性不足的机构合作,创建一个多元化、可持续的CIP社区。Chishiki提供同伴指导支持,并与NSF ACCESS计算科学支持网络(csn)合作,支持CI专业人员进行与CI和CEE相关的研究活动。通过一个活跃的实践社区,cip与中东欧研究的整合成为可能,为专业发展、合作和福祉提供了机会。该项目将公布在中东欧建立伙伴关系、扩大采用和普及CI解决方案方面的最佳实践。chihiki提供人工智能增强的CI解决方案,并支持一个致力于改变土木和环境工程的集成和多样化的CIP社区。通过Chishiki。该项目为CI专业人员开发新课程,以构建和支持复杂的CI框架,促进ai驱动的研究创新。关于AI4CI和CI4AI的课程涵盖了支持AI的编程、高性能计算(HPC)系统的AI增强性能调优、AI驱动的知识发现和管理,以及构建大规模生产就绪的AI系统。科学机器学习课程探讨了可解释人工智能、可微编程和不确定性传播的技术,从而使CI专业人员能够理解人工智能在中东欧的需求和使用。Chishiki项目开发了一种新颖的、可扩展的学习环境,通过强化学习来构建上下文感知的大型语言模型,以生成个性化的测验和解释。个性化的人工智能导师有助于生成个性化的测验和定制的解释,以满足个人的需求和学习能力。这些可扩展的、个性化的人工智能导师授课课程将在康奈尔大学虚拟研讨会(CVW)学习平台上作为开放访问内容提供,覆盖广泛的cip社区。为了加速人工智能增强研究,该项目支持基于图神经网络和可微分模拟的复杂人工智能替代品的开发,用于优化和工程设计,开发框架,在内存有限的边缘设备上部署基础人工智能模型,用于结构健康监测和运输规划,以及HPC系统,以开发支持人工智能的CEE的范例应用。Chishiki项目还支持人工智能辅助代码开发,以加速科学研究。该项目的成果将在现有的nsf资助平台、DesignSafe和德克萨斯高级计算中心(TACC)上提供,扩大人工智能增强的CI创新的采用和集成。这些开发成果将作为开放课程内容和开源解决方案向公众开放,以便更广泛地传播。该项目的目标是通过这个个性化和可扩展的学习平台,使全国500多家cip受益,并在全球范围内培训超过30万名用户。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krishna Kumar其他文献

Introductory operations research
运筹学入门
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. S. Kasana;Krishna Kumar
  • 通讯作者:
    Krishna Kumar
Klippel Trenaunay Syndrome: a rare case report in a neonate
Klippel Trenaunay 综合征:新生儿罕见病例报告
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krishna Kumar;Nanjappa Mohan Kumar
  • 通讯作者:
    Nanjappa Mohan Kumar
Undescended Testis: A Plea for Early Diagnosis and Optimal ManagementKumar G1*
未降睾丸:呼吁早期诊断和最佳管理Kumar G1*
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krishna Kumar
  • 通讯作者:
    Krishna Kumar
Ultrastructural features of the larval Malpighian tubules of the flesh fly Sarcophaga ruficornis (Diptera: Sarcophagidae)
肉蝇Sarcophaga ruficornis(双翅目:Sarcophagidae)幼虫马氏小管的超微结构特征
Detection of Rotavirus from Hospitalized Diarrheic Children in Uttar Pradesh, India
印度北方邦住院腹泻儿童中检测到轮状病毒
  • DOI:
    10.1007/s12088-012-0279-6
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3
  • 作者:
    S. Dash;Krishna Kumar;Anuj Tewari;P. Varshney;A. Goel;A. K. Bhatia
  • 通讯作者:
    A. K. Bhatia

Krishna Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krishna Kumar', 18)}}的其他基金

CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
  • 批准号:
    2339678
  • 财政年份:
    2024
  • 资助金额:
    $ 699.93万
  • 项目类别:
    Continuing Grant
POSE: Phase I: Tuitus - A sustainable, inclusive, open ecosystem for Natural Hazards Engineering
POSE:第一阶段:Tuitus - 一个可持续、包容、开放的自然灾害工程生态系统
  • 批准号:
    2229702
  • 财政年份:
    2022
  • 资助金额:
    $ 699.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Apparatus for Normalization and Systematic Control of the MOLLER Experiment
合作研究:莫勒实验标准化和系统控制装置
  • 批准号:
    2013142
  • 财政年份:
    2021
  • 资助金额:
    $ 699.93万
  • 项目类别:
    Continuing Grant
Elements: Cognitasium - Enabling Data-Driven Discoveries in Natural Hazards Engineering
Elements:Cognitasium - 实现自然灾害工程中数据驱动的发现
  • 批准号:
    2103937
  • 财政年份:
    2021
  • 资助金额:
    $ 699.93万
  • 项目类别:
    Standard Grant
The Impact of Federal Life Science Funding on University R&D
联邦生命科学资助对 R 大学的影响
  • 批准号:
    1064215
  • 财政年份:
    2011
  • 资助金额:
    $ 699.93万
  • 项目类别:
    Standard Grant
Acquisition of a 500 MHz NMR Spectrometer
购买 500 MHz NMR 波谱仪
  • 批准号:
    0821508
  • 财政年份:
    2008
  • 资助金额:
    $ 699.93万
  • 项目类别:
    Standard Grant
CAREER: Controlling Helix-Helix Interactions in Membrane Proteins
职业:控制膜蛋白中的螺旋-螺旋相互作用
  • 批准号:
    0236846
  • 财政年份:
    2003
  • 资助金额:
    $ 699.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了