MCA: Leveraging Artificial Intelligence to Improve Understanding of Biogenic Volatile Organic Compound Emissions and Chemistry over Heterogeneous Forest Landscapes
MCA:利用人工智能提高对异质森林景观中生物挥发性有机化合物排放和化学的了解
基本信息
- 批准号:2322325
- 负责人:
- 金额:$ 25.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Mid-Career Advancement (MCA) project will leverage advances in imaging technology, artificial intelligence (AI), and machine learning (ML) techniques to advance sampling strategies and prediction methods for mapping biogenic volatile organic compound (BVOC) emissions in heterogeneous landscapes. BVOCs play an important role in the chemistry of the atmosphere by influencing the oxidative capacity of the troposphere and the associated chemical cycles of atmospheric trace gases. The emissions of reactive BVOCs have implications for ozone production, air quality, health effects, and climate. This project will apply AI methods to forest imaging data to plan BVOC field sampling locations in two disparate forest ecosystem types: Central Maine and near Manaus, Amazonas, Brazil. As many of the target areas are inaccessible, unmanned aerial vehicles (UAVs) will be used to sample BVOCs above the selected forests. This project will address the following questions: (1) How can BVOCs over a heterogeneous landscape be optimally sampled with a limited number of sampling locations? (2) To what extent do BVOC concentrations vary across heterogeneous forest features? (3) What do varying above-canopy BVOC concentrations suggest about differences in BVOC emission rates from the underlying forest subtypes? and (4) At what scale and to what extent do spatial variations in BVOC emissions significantly affect regional and global emissions estimates? The final goal of the study is to compare the maps of BVOC concentrations with emissions predicted by standard emission models such as MEGAN.This project has the potential to develop tools that could have a wide range of applications in environmental sensing and be of great interest to the atmospheric chemistry and broader environmental science community. The project includes support for a summer undergraduate student to participate in the research. There are also plans for a summer institute on AI-driven sensing and environmental modeling provide new opportunities for undergraduate students to become involved in innovative STEM research. This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences and by the Established Program to Stimulate Competitive Research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该中期职业发展(MCA)项目将利用成像技术,人工智能(AI)和机器学习(ML)技术的进步,推进采样策略和预测方法,以绘制异质景观中生物挥发性有机化合物(BVOC)排放。 BVOCs通过影响对流层的氧化能力和大气痕量气体的相关化学循环,在大气化学中发挥重要作用。活性BVOCs的排放对臭氧生成、空气质量、健康影响和气候都有影响。该项目将人工智能方法应用于森林成像数据,以规划两种不同森林生态系统类型中的BVOC实地采样位置:缅因州中部和巴西亚马逊州马瑙斯附近。由于许多目标区域无法进入,将使用无人驾驶飞行器在选定的森林上空对BVOCs进行采样。本项目将解决以下问题:(1)如何在有限的采样点上对异质景观中的BVOCs进行最佳采样?(2)在不同的森林特征中,BVOC的浓度有多大的差异?(3)不同的冠层以上BVOC浓度暗示了底层森林亚型BVOC排放率的差异吗?以及(4)BVOC排放的空间变化在多大尺度和程度上显著影响区域和全球排放估计?该研究的最终目标是将BVOC浓度图与标准排放模型(如MEGAN)预测的排放量进行比较,该项目有可能开发出在环境传感方面具有广泛应用的工具,并对大气化学和更广泛的环境科学界产生极大的兴趣。该项目包括支持一名暑期本科生参与研究。此外,还计划举办一个关于人工智能驱动的传感和环境建模的暑期研究所,为本科生参与创新的STEM研究提供新的机会。该项目由地球科学理事会共同资助,以支持AI/ML在地球科学领域的进步,并由既定计划刺激竞争性研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karena McKinney其他文献
Karena McKinney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karena McKinney', 18)}}的其他基金
MRI-R2: Acquisition of a Proton Transfer Reaction Time-of-Flight Mass Spectrometer for Atmospheric Chemistry
MRI-R2:获取用于大气化学的质子转移反应飞行时间质谱仪
- 批准号:
0959452 - 财政年份:2010
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
相似海外基金
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:
10750074 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Leveraging genomics and artificial intelligence to develop predictive pesticide risk assessment frameworks for wild bees (Ref 4559)
利用基因组学和人工智能开发野生蜜蜂的预测性农药风险评估框架(参考文献 4559)
- 批准号:
2866086 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Studentship
Leveraging social determinants via artificial intelligence and peer coaching to address racial disparities in primary care among people who use opioids
通过人工智能和同伴辅导利用社会决定因素来解决阿片类药物使用者初级保健中的种族差异
- 批准号:
10829058 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Leveraging artificial intelligence to develop novel tools for studying infant brain development
利用人工智能开发研究婴儿大脑发育的新工具
- 批准号:
10554951 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Leveraging artificial intelligence and social innovation to reduce disparities in COVID-19 testing among African Americans
利用人工智能和社会创新减少非裔美国人之间的 COVID-19 检测差异
- 批准号:
10845418 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Leveraging artificial intelligence and social innovation to reduce disparities in COVID-19 testing among African Americans
利用人工智能和社会创新减少非裔美国人之间的 COVID-19 检测差异
- 批准号:
10616349 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Improving public access to health information and services by leveraging Artificial Intelligence, engagement and multidisciplinary approaches.
利用人工智能、参与和多学科方法,改善公众获取健康信息和服务的机会。
- 批准号:
460966 - 财政年份:2022
- 资助金额:
$ 25.95万 - 项目类别:
Miscellaneous Programs
Leveraging artificial intelligence to examine the impact of digital marketing of unhealthy food on children's dietary intake
利用人工智能研究不健康食品的数字营销对儿童饮食摄入的影响
- 批准号:
456911 - 财政年份:2021
- 资助金额:
$ 25.95万 - 项目类别:
Operating Grants