Scalable Manufacturing of Nanobubbles via Ultrasonic Shearing for Biomedicine

通过超声波剪切大规模制造生物医学纳米气泡

基本信息

项目摘要

Research funded by this award aims towards a better understanding and control of the formation of tiny bubbles, known as nanobubbles. These nanobubbles are highly sensitive to pressure changes and can release their contents when exposed to sound waves. Although these ultrasound-responsive nanobubbles hold promise for delivering drugs or aiding in medical imaging, their production with nanometer size and uniform size distribution has been challenging. This award supports fundamental research to develop a new method, called ultrasonic shearing, to create uniform-sized nanobubbles that can be tuned for size and chemistry as needed. The method integrates ultrasonication and shearing using an impeller to achieve monodispersed nanobubbles. This advancement could lead to large-scale manufacturing of nanobubbles with applications in biomedicine, such as gene and drug delivery for diseases such as osteoporosis. Additionally, this technology could enhance wastewater treatment systems by improving processes like oxygen transfer and air flotation, thereby reducing pollution. The project also includes educational efforts to increase the understanding of scalable nanobubble manufacturing and their biomedical applications, particularly among women and underrepresented minority groups, aiming to contribute to both scientific progress and societal benefits as well as the development of a skilled workforce.Various nanobubble sizes exhibit distinct behaviors, yet understanding their synthesis remains limited due to the absence of an efficient manufacturing method allowing precise size and size distribution control. Furthermore, there is a lack of fundamental knowledge on the relationship between the processing parameters and the acoustic properties of nanobubbles. This research advances nanobubble manufacturing methods by investigating the ultrasonic shearing mechanism, employing a combination of computational modeling and experimental methodologies. The inherent energy dynamics in the manufacturing process is simulated by calculating ultrasonic shear energy and nanobubble surface energy. Through the empirical assessment of temperature shifts within the emulsion, a correlation is established between the droplet vaporization and energy derived from ultrasonic shearing. Integrating this model with the ultrasonic shearing method enables the development of systems capable of tailoring nanobubble size as a function of ultrasonic shearing, incorporating variables such as ultrasound intensity, shearing rate, and process duration. This technique can generate programmable nanobubbles with controlled cargo release mechanisms. Additionally, the research aims to identify nanobubble subpopulations with enhanced responsiveness to ultrasound using tissue-mimicking materials for medical imaging applications. Finally, the project explores the interplay between ultrasonic shearing, therapeutic-encapsulated nanobubbles, and cellular dynamics, particularly in osteoporosis, to uncover potential therapeutic approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助的研究旨在更好地理解和控制微小气泡(称为纳米气泡)的形成。 这些纳米气泡对压力变化高度敏感,当暴露于声波时可以释放其内容物。尽管这些超声响应纳米气泡有望用于递送药物或辅助医学成像,但其具有纳米尺寸和均匀尺寸分布的生产一直具有挑战性。该奖项支持基础研究开发一种称为超声波剪切的新方法,以创建大小均匀的纳米气泡,可以根据需要调整大小和化学性质。该方法集成了超声处理和使用叶轮的剪切,以实现单分散的纳米气泡。这一进展可能导致大规模制造纳米气泡,并应用于生物医学,如骨质疏松症等疾病的基因和药物输送。此外,该技术还可以通过改善氧转移和气浮等工艺来增强废水处理系统,从而减少污染。该项目还包括教育工作,以增加对可扩展的纳米气泡制造及其生物医学应用的理解,特别是在妇女和代表性不足的少数群体中,旨在为科学进步和社会效益以及熟练劳动力的发展做出贡献。然而,由于缺乏允许精确控制尺寸和尺寸分布的有效制造方法,对它们的合成的理解仍然有限。此外,有一个缺乏基本知识的处理参数和纳米气泡的声学性能之间的关系。本研究通过研究超声波剪切机制,采用计算建模和实验方法相结合的纳米气泡制造方法。通过计算超声剪切能和纳米气泡表面能,模拟了制造过程中固有的能量动力学。通过经验评估的乳液内的温度变化,液滴蒸发和来自超声波剪切的能量之间建立了相关性。将该模型与超声剪切方法相结合,能够开发出能够根据超声剪切量身定制纳米气泡尺寸的系统,并将超声强度、剪切速率和工艺持续时间等变量纳入其中。这种技术可以产生具有受控货物释放机制的可编程纳米气泡。此外,该研究的目的是使用用于医学成像应用的组织模拟材料来识别对超声具有增强响应性的纳米气泡亚群。最后,该项目探讨了超声剪切,治疗封装纳米气泡和细胞动力学之间的相互作用,特别是在骨质疏松症,以揭示潜在的治疗方法。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehdi Razavi其他文献

How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects
仿生纳米纤维如何推进皮肤伤口管理领域:最新进展和未来前景
  • DOI:
    10.1016/j.pmatsci.2024.101293
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    40.000
  • 作者:
    Niloofar Eslahi;Foad Soleimani;Roya Lotfi;Fatemeh Mohandes;Abdolreza Simchi;Mehdi Razavi
  • 通讯作者:
    Mehdi Razavi
Alginate hydrogel-encapsulated bone marrow-derived mesenchymal stem cells and crocin improve cardiac function in a rat model of myocardial infarction
海藻酸盐水凝胶包裹的骨髓间充质干细胞和番红花素可改善心肌梗死大鼠模型的心功能
  • DOI:
    10.1016/j.ijbiomac.2025.141548
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    8.500
  • 作者:
    Mina Ramezani;Nafiseh Baheiraei;S. Zahra Bathaie;Mehdi Razavi;Nasim Naderi
  • 通讯作者:
    Nasim Naderi
MP-483494-008 UNCOVERING THE STRUCTURAL EFFECTS OF RADIOFREQUENCY ABLATION ON THE PAPILLARY MUSCLE-CHORDAE TENDINEAE JUNCTION
MP-483494-008 揭示射频消融对乳头肌-腱索连接结构效应
  • DOI:
    10.1016/j.hrthm.2024.03.440
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Drew Bernard;Luis H. Victor;Christine Cao;Skylar Buchan;Mathews Medayil John;Allison Post;Deborah Vela;K. Jane Grande-Allen;Mehdi Razavi
  • 通讯作者:
    Mehdi Razavi
Correction: Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound
  • DOI:
    10.1186/s13287-022-03210-6
  • 发表时间:
    2022-12-20
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Mehdi Razavi;Tanchen Ren;Fengyang Zheng;Arsenii Telichko;Jing Wang;Jeremy J. Dahl;Utkan Demirci;Avnesh S. Thakor
  • 通讯作者:
    Avnesh S. Thakor
Recognition and Management of Complex Rhythm Disorders in Heterotopic Heart Transplantation
  • DOI:
    10.1016/j.healun.2008.12.005
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher M. Frank;Mehdi Razavi;Mohammed Saeed;Roberta C. Bogaev;Ali Massumi
  • 通讯作者:
    Ali Massumi

Mehdi Razavi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehdi Razavi', 18)}}的其他基金

CAREER: Liquid Metal Processing of Magnesium Composites for Microstructure Refinement
职业:镁复合材料的液态金属加工以细化微观结构
  • 批准号:
    2142610
  • 财政年份:
    2022
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Standard Grant

相似海外基金

Transitioning to High Scrap steel Manufacturing
过渡到高废钢制造
  • 批准号:
    2749036
  • 财政年份:
    2026
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Studentship
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Studentship
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
  • 批准号:
    10097846
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Collaborative R&D
Cranfield University and Nissan Motor Manufacturing UK Ltd KTP 23_24 R1
克兰菲尔德大学和日产汽车制造英国有限公司 KTP 23_24 R1
  • 批准号:
    10069765
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Knowledge Transfer Partnership
Powder Manufacturing Facility for Additive Manufacturing
用于增材制造的粉末制造设施
  • 批准号:
    LE240100120
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
  • 批准号:
    EP/Z531261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Research Grant
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
  • 批准号:
    MR/X034615/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Fellowship
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Cooperative Agreement
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Standard Grant
STTR Phase I: Semantically-Enabled Augmented Reality for Manufacturing
STTR 第一阶段:用于制造的语义增强现实
  • 批准号:
    2335533
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了