Enabling Sulfur-Based Beyond-Lithium Metal Batteries via a Mechanistic Understanding of Advanced Hybrid Cathodes and Borate Electrolytes
通过对先进混合阴极和硼酸盐电解质的机理理解,实现硫基超锂金属电池
基本信息
- 批准号:2323065
- 负责人:
- 金额:$ 51.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Using fossil fuels to generate electricity and power transportation is the primary source of anthropogenic carbon dioxide emissions that lead to climate change. The utilization of batteries to store renewable energy, such as solar and wind, is critical to lessen dependence on nonrenewable resources. However, lithium-ion batteries used in handheld devices and electric vehicles currently use expensive and rare materials that are not produced domestically, limiting affordability and domestic supply chain security. Developing batteries with low-cost, sustainable, and domestically-sourced materials such as sodium, magnesium, or calcium could overcome these challenges, but new chemistries are needed to increase the performance of batteries based on these materials. This research aims to lead the development of next-generation battery chemistries based on these elements to support the domestic production of low-cost battery solutions that increase the competitiveness and independence of the U.S. in the renewable energy sector. Moreover, this effort promotes inclusivity and fosters the growth of future scientists and engineers in this field.Currently, beyond Li-ion batteries have limitations due to their low-capacity cathodes and poor electrolyte stability. This makes them less competitive in high-energy density applications. The aim of this project is to create affordable and high-performance beyond Li-ion batteries that can compete in the market by researching reversible electrolytes and high-capacity cathodes for these batteries. The strategy for accomplishing this ambitious goal is to leverage a combined computational and experimental approach to: 1) investigate a set of high-energy density hybrid cathodes where sulfur is chemically bound to a catalytic substrate material, 2) discover advanced electrolytes based on the tunable borate chemistry, and 3) map the various reaction mechanisms based on novel cathodes and electrolytes to their macroscopic performance, which will inform the rational discovery of superior Na, Mg, and Ca anode chemistries. This mechanistic map will be iteratively applied and refined by computationally predicting superior hybrid cathodes and borate electrolytes, characterizing their performance, and revising the mechanistic understanding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用化石燃料发电和动力运输是导致气候变化的人为二氧化碳排放的主要来源。利用电池储存可再生能源,如太阳能和风能,对于减少对不可再生资源的依赖至关重要。然而,用于手持设备和电动汽车的锂离子电池目前使用的是昂贵而稀有的材料,这些材料在国内并不生产,这限制了人们的负担能力和国内供应链的安全性。利用钠、镁或钙等低成本、可持续的国内材料开发电池可以克服这些挑战,但需要新的化学物质来提高基于这些材料的电池的性能。这项研究旨在引领基于这些元素的下一代电池化学物质的开发,以支持国内生产低成本电池解决方案,从而提高美国在可再生能源领域的竞争力和独立性。此外,这一努力促进了包容性,并促进了该领域未来科学家和工程师的成长。目前,超锂离子电池由于其低容量阴极和较差的电解质稳定性而受到限制。这使得它们在高能量密度应用中缺乏竞争力。该项目的目标是通过研究可逆电解质和高容量阴极,创造出可负担得起的高性能锂离子电池,从而在市场上具有竞争力。实现这一宏伟目标的策略是利用计算和实验相结合的方法:1)研究一组高能密度混合阴极,其中硫与催化底物化学结合;2)发现基于可调硼酸盐化学的先进电解质;3)将基于新型阴极和电解质的各种反应机制映射到它们的宏观性能,这将为合理发现优越的Na, Mg和Ca阳极化学提供信息。该机制图将通过计算预测优良的混合阴极和硼酸盐电解质,表征其性能,并修改机制理解来迭代应用和完善。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNMEI BAN其他文献
CHUNMEI BAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Sulfur Based Stem Cell Therapeutics in Necrotizing Enterocolitis
硫基干细胞治疗坏死性小肠结肠炎
- 批准号:
10659645 - 财政年份:2023
- 资助金额:
$ 51.81万 - 项目类别:
Sulfur-based materials for infrared optics and thermal imaging
用于红外光学和热成像的硫基材料
- 批准号:
FT220100054 - 财政年份:2022
- 资助金额:
$ 51.81万 - 项目类别:
ARC Future Fellowships
Development of Sulfur-Based Reactions with Translational Applications
硫基反应的发展及其转化应用
- 批准号:
10594999 - 财政年份:2021
- 资助金额:
$ 51.81万 - 项目类别:
Utilization of sulfur containing polymer as moisture protective and hole transport layer for the development of perovskite-based solar cells
利用含硫聚合物作为防潮层和空穴传输层开发钙钛矿太阳能电池
- 批准号:
568512-2021 - 财政年份:2021
- 资助金额:
$ 51.81万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
All-solid-state lithium-sulfur battery design via graphene-based materials
基于石墨烯材料的全固态锂硫电池设计
- 批准号:
561137-2020 - 财政年份:2021
- 资助金额:
$ 51.81万 - 项目类别:
Alliance Grants
Development of Sulfur-Based Reactions with Translational Applications
硫基反应的发展及其转化应用
- 批准号:
10180743 - 财政年份:2021
- 资助金额:
$ 51.81万 - 项目类别:
Development of Sulfur-Based Reactions with Translational Applications
硫基反应的发展及其转化应用
- 批准号:
10373112 - 财政年份:2021
- 资助金额:
$ 51.81万 - 项目类别:
Sulfur-based aurophilic coordination polymers for materials applications
用于材料应用的硫基亲金配位聚合物
- 批准号:
560715-2020 - 财政年份:2020
- 资助金额:
$ 51.81万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative research: BEE: Discovery and characterization of novel microbial lineages in an early Earth analog sulfur-based ecosystem.
合作研究:BEE:早期地球模拟硫基生态系统中新型微生物谱系的发现和表征。
- 批准号:
2016423 - 财政年份:2020
- 资助金额:
$ 51.81万 - 项目类别:
Standard Grant
All-solid-state lithium-sulfur battery design via graphene-based materials
基于石墨烯材料的全固态锂硫电池设计
- 批准号:
561137-2020 - 财政年份:2020
- 资助金额:
$ 51.81万 - 项目类别:
Alliance Grants














{{item.name}}会员




