DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties

DMREF:通过热机械性能的纳米级控制加速粘合剂的设计

基本信息

  • 批准号:
    2323317
  • 负责人:
  • 金额:
    $ 167.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

This Designing Materials to Revolutionize and Engineer our Future (DMREF) grant supports the generation of new knowledge related to the design of advanced adhesives for use in many industries, including automotive, aerospace, electronics, construction, and defense. Adhesives have significant benefits over traditional fasteners because they can bind different materials to one another and can be applied to wide areas which distributes the applied stresses and reduces failure. However, traditional epoxy adhesives can be very brittle. This research project will focus on understanding the structure-property relationships of epoxy adhesives that will enable the design of adhesives that are less brittle, more environmentally friendly, and are lightweight. This work will combine state-of-the-art experimental, simulation, and machine learning techniques to learn about these structured adhesives and accelerate the design and development cycles. As a part of this approach, we will ensure that the data and models will be widely shared so that they can be leveraged by academic, industrial and government researchers. Society will benefit from this project both through the new knowledge of structured adhesives, as well as through the education and training of diverse student populations at three universities on how to effectively combine experimental and modeling approaches to design new materials. Hierarchically structured adhesives exhibit exceptional promise to incorporate multiple toughening mechanisms into epoxy adhesives. However, there are many outstanding questions about the potential multiscale assembly and toughening mechanisms of these materials. Hierarchical epoxy adhesives have large combinatorial variable spaces, complicated multiscale structures and properties, and inherent tradeoffs during multi-property optimization, which results in decades-long development cycles. The primary objective of this work is to develop the requisite fundamental understanding to enable the discovery and design of hierarchically ordered adhesives with tailored thermomechanical properties. Specifically, we will develop validated multiscale models to increase our understanding of block copolymer self-assembly in epoxy, the adhesion forces, and other key mechanical properties (toughness, modulus) for hierarchically ordered adhesives. The hierarchical structure of the materials will be developed using a combined top-down/bottom-up approach which leverages additive manufacturing and block copolymer self-assembly, respectively. To accelerate the discovery process, experimental and multiscale modeling-generated data will be incorporated along with machine learning tools for property prediction into an existing tool called Polymer design using Machine-learning Assisted Property Screening. The resultant upgraded tool will be an integrated computational materials engineering framework for adhesive design with strong connections to molecular building blocks and quantitative structure-property-performance relations which will be made available to a broader community of stakeholders.This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG), and the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该设计材料革命和工程我们的未来(DMREF)资助支持与先进粘合剂设计相关的新知识的产生,用于许多行业,包括汽车,航空航天,电子,建筑和国防。与传统紧固件相比,粘合剂具有显著的优点,因为它们可以将不同的材料彼此粘合,并且可以应用于广泛的区域,从而分散施加的应力并减少故障。然而,传统的环氧粘合剂可能非常脆。该研究项目将侧重于了解环氧树脂粘合剂的结构-性能关系,这将使粘合剂的设计更不脆,更环保,重量轻。这项工作将结合联合收割机最先进的实验,模拟和机器学习技术,以了解这些结构化粘合剂,并加快设计和开发周期。作为这一方法的一部分,我们将确保数据和模型得到广泛共享,以便学术、工业和政府研究人员能够利用它们。社会将受益于这一项目,既通过结构粘合剂的新知识,以及通过教育和培训不同的学生群体在三所大学如何有效地结合联合收割机实验和建模方法来设计新材料。分级结构的粘合剂表现出将多种增韧机制结合到环氧树脂粘合剂中的特殊前景。然而,有许多悬而未决的问题,这些材料的潜在的多尺度组装和增韧机制。分层环氧胶粘剂具有较大的组合变量空间,复杂的多尺度结构和性能,以及多性能优化过程中的固有权衡,这导致数十年的开发周期。这项工作的主要目标是发展必要的基本理解,使发现和设计的层次有序的粘合剂与定制的热机械性能。具体来说,我们将开发经过验证的多尺度模型,以增加我们对嵌段共聚物在环氧树脂中自组装的理解,粘合力和分层有序粘合剂的其他关键机械性能(韧性,模量)。材料的分层结构将使用自上而下/自下而上的组合方法开发,该方法分别利用增材制造和嵌段共聚物自组装。为了加速发现过程,实验和多尺度建模生成的数据将与机器学习工具一起沿着用于属性预测,并将其整合到一种称为使用机器学习辅助属性筛选的聚合物设计的现有工具中。由此产生的升级工具将是一个集成的计算材料工程框架,用于粘合剂设计,与分子构建块和定量结构-性能-性能关系有着密切的联系,将提供给更广泛的利益相关者。该项目得到了工程局(ENG)土木,机械和制造创新(CMMI)部门的支持,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Krogstad其他文献

Daniel Krogstad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
  • 批准号:
    2338158
  • 财政年份:
    2024
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Continuing Grant
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2401218
  • 财政年份:
    2023
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Continuing Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
  • 批准号:
    10552325
  • 财政年份:
    2023
  • 资助金额:
    $ 167.01万
  • 项目类别:
AccelNet-Design: Accelerating Research Collaboration on Artificial and Natural Intelligences (ARCANI)
AccelNet-Design:加速人工智能和自然智能的研究合作 (ARCANI)
  • 批准号:
    2302028
  • 财政年份:
    2023
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Standard Grant
International Collaboration on Mobility Digital Twin for Accelerating Data Driven Autonomous Driving Design Platform Synthesis
移动数字孪生国际合作加速数据驱动的自动驾驶设计平台综合
  • 批准号:
    22KK0237
  • 财政年份:
    2023
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Modular Gas Turbine - Aerodynamic and Thermodynamic design of Heat Management Systems (Accelerating Net Zero using Advanced Fluids).
模块化燃气轮机 - 热管理系统的空气动力学和热力学设计(使用先进流体加速净零排放)。
  • 批准号:
    2737764
  • 财政年份:
    2022
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Studentship
CAREER: Accelerating Spatial Network Design: An Uncertainty-Driven Predict-and-Optimize Learning Framework
职业:加速空间网络设计:不确定性驱动的预测和优化学习框架
  • 批准号:
    2144338
  • 财政年份:
    2022
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Continuing Grant
Quantum simulations for accelerating the in silico design of optoelectronic materials.
用于加速光电材料的计算机设计的量子模拟。
  • 批准号:
    576181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 167.01万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
The InteRnatIonal ecosystem for accelerating the transition to Safe-and-Sustainable-by-design materials, products and processes
加速向安全和可持续设计材料、产品和工艺过渡的国际生态系统
  • 批准号:
    10038816
  • 财政年份:
    2022
  • 资助金额:
    $ 167.01万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了