Unlocking organic polariton lasers with systematic molecular design

通过系统分子设计解锁有机偏振子激光器

基本信息

  • 批准号:
    2324344
  • 负责人:
  • 金额:
    $ 49.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical description:This research seeks to alter the properties of carbon-based organic semiconductors by combining light with materials engineering to open a route for new technological applications from tunable, low-power lasers to quantum information devices. Such carbon-based materials are ubiquitous in our daily lives. For instance, they enable plants to harvest light through photosynthesis. They feature in lightweight, flexible solar cells and light-emitting diode (LED) displays of top-end phones and televisions. Significant research goes into ways to control their properties – emitting light of the right color or transporting current efficiently – by changing their molecular structure. However, it is also possible to tune many materials properties with light, which is the key concept behind this project. When two mirrors are placed very close together with high precision, they act as tiny boxes, trapping light. If molecular semiconductors are placed between the mirrors, they can strongly interact with this light and begin to behave in entirely new surprising ways, forming new states called ‘polaritons’. These polaritons can emit light through new physical processes – potentially improving LED devices – and can undergo chemical reactions through new pathways. In this research, the principal investigator aims to exploit polaritons for a new generation of organic semiconductor lasers. Crucially, the project uses systematic control of the organic material to develop the first rational design rules to improve laser efficiency and performance. This approach lays the foundation for versatile, ‘plug-and-play’ organic lasers for communications, sensing, and new quantum technologies. Beyond these technological impacts, the project develops a portable mechanical demonstration of the physical concept behind polariton lasers. The research team aims to run the demonstration at local community outreach centers. Through hands-on exploration of how the collective behavior is affected by small structural changes, the demonstration engages the audience in the scientific method and in cross-cutting ideas of physics and chemistry like coherence. Technical description:Strong light-matter coupling to form exciton-polaritons holds immense promise for materials engineering. When applied to organic semiconductors, it offers a way to non-synthetically manipulate the molecular wavefunction and energy structure. This approach can alter fundamental behaviors like charge and energy transport, allowing functional properties of molecules to be rewritten at will. These effects range from redirecting chemical reactions to enabling the formation of Bose-Einstein condensates at room temperature. The latter have the potential to provide a general platform for low-threshold, electrically injected lasers. However, critical questions about the nature of polaritons hold back their rational application: How does the complex electronic structure of molecular materials impact the polariton energy landscape? What molecular levers can be identified to control the dynamical behavior of polaritons? How should devices be structured to maximize unique properties of polaritons? Focusing on polariton condensation, the research team uses a suite of ultrafast (fs to ps) time- and angle-resolved spectroscopies to reveal the molecular basis for the dynamical processes leading to condensation. These methods are combined with systematic optical microcavity variation, including control over critical properties of the semiconductor active layer and the overall device structure. By correlating polariton dynamics and condensation thresholds across these structures, the project aims to identify the crucial properties that govern polariton condensation and highlight the structural features that can be optimized. The ultimate goal of the research is to develop a roadmap to systematically reduce organic polariton condensation thresholds to achieve a platform for electrically injected lasing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:这项研究旨在通过将光与材料工程相结合来改变碳基有机半导体的性质,为从可调谐低功率激光器到量子信息设备的新技术应用开辟一条路线。这种碳基材料在我们的日常生活中无处不在。例如,它们使植物能够通过光合作用获得光。它们的特点是重量轻,灵活的太阳能电池和高端手机和电视的发光二极管(LED)显示屏。重要的研究致力于通过改变它们的分子结构来控制它们的特性--发射正确颜色的光或有效地传输电流。然而,也可以用光来调整许多材料的属性,这是这个项目背后的关键概念。当两个镜子非常紧密地放置在一起时,它们就像一个小盒子,捕获光线。如果将分子半导体置于镜子之间,它们可以与这种光强烈相互作用,并开始以全新的令人惊讶的方式表现出来,形成称为“极化子”的新状态。这些极化激元可以通过新的物理过程发光-可能改善LED器件-并可以通过新的途径进行化学反应。在这项研究中,主要研究者的目标是利用极化激元的新一代有机半导体激光器。最重要的是,该项目使用有机材料的系统控制来开发第一个合理的设计规则,以提高激光器的效率和性能。这种方法为用于通信、传感和新量子技术的多功能、“即插即用”有机激光器奠定了基础。除了这些技术影响之外,该项目还开发了一种便携式机械演示,展示了偏振激元激光器背后的物理概念。研究小组的目标是在当地社区外展中心进行演示。通过亲身探索集体行为如何受到小的结构变化的影响,演示使观众参与科学方法以及物理和化学的交叉思想,如连贯性。技术描述:强光-物质耦合形成激子-极化激元对材料工程具有巨大的前景。当应用于有机半导体时,它提供了一种非合成操纵分子波函数和能量结构的方法。这种方法可以改变电荷和能量传输等基本行为,允许随意重写分子的功能特性。这些效应从改变化学反应的方向到在室温下形成玻色-爱因斯坦凝聚体。后者有可能为低阈值电注入激光器提供一个通用平台。然而,关于极化激元性质的关键问题阻碍了它们的合理应用:分子材料的复杂电子结构如何影响极化激元能量景观?什么样的分子杠杆可以用来控制极化激元的动力学行为?应该如何构造设备以最大限度地发挥极化激元的独特特性?专注于极化子凝聚,研究小组使用一套超快(fs到ps)时间和角度分辨光谱来揭示导致凝聚的动力学过程的分子基础。这些方法与系统的光学微腔变化相结合,包括控制半导体有源层和整个器件结构的关键特性。通过将这些结构中的极化激元动力学和凝聚阈值相关联,该项目旨在确定控制极化激元凝聚的关键特性,并突出可以优化的结构特征。该研究的最终目标是制定一个路线图,以系统地降低有机极化激元凝聚阈值,实现电注入激光的平台。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Musser其他文献

Additively manufactured compact water-cooled refrigerant condenser
增材制造的紧凑型水冷式制冷剂冷凝器
  • DOI:
    10.1016/j.ijheatmasstransfer.2025.126836
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Omar M. Zaki;Robert A. Stavins;Mario Wenzel;Andrew Musser;Darin Sharar;Stefan Elbel;Nenad Miljkovic;William P. King
  • 通讯作者:
    William P. King

Andrew Musser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

低纬度边缘海颗粒有机碳的卫星遥感算法研究
  • 批准号:
    41076114
  • 批准年份:
    2010
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
基于活性炭孔径调控和表面修饰改性的水中低浓度有机污染物优化去除适配机制
  • 批准号:
    50878204
  • 批准年份:
    2008
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Manifacturing room-temperature polariton devices based on organic microcavity
基于有机微腔的室温极化激元器件的制造
  • 批准号:
    18H01900
  • 财政年份:
    2018
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Advanced materials for organic and hybrid polariton structures and devices
用于有机和混合极化子结构和器件的先进材料
  • 批准号:
    2106131
  • 财政年份:
    2018
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Studentship
Organic Polariton Laser with Low-dimensional TPCO Crystal Cavities
具有低维 TPCO 晶体腔的有机偏振子激光器
  • 批准号:
    15K13773
  • 财政年份:
    2015
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Fabrication of highly-doped organic crystalline materials and their polariton properties
高掺杂有机晶体材料的制备及其极化子特性
  • 批准号:
    23655183
  • 财政年份:
    2011
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Probing polariton condensation dynamics by multiquantum coherent spectroscopy in organic optical microcavities
通过有机光学微腔中的多量子相干光谱探测极化子凝聚动力学
  • 批准号:
    422383-2012
  • 财政年份:
    2011
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Engineering polariton non-linearity in organic and hybrid-semiconductor microcavities
有机和混合半导体微腔中的工程极化子非线性
  • 批准号:
    EP/G062404/1
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Research Grant
Engineering polariton non-linearity in organic and hybrid-semiconductor microcavities
有机和混合半导体微腔中的工程极化子非线性
  • 批准号:
    EP/G063494/1
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Research Grant
Organic Polariton Microcavities for Ultra-Low Energy Switching
用于超低能量开关的有机极化子微腔
  • 批准号:
    1001994
  • 财政年份:
    2010
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Continuing Grant
Miniaturized photonic devices constructed from exciton polariton waveguides of organic dye nanofibers
由有机染料纳米纤维的激子极化子波导构建的微型光子器件
  • 批准号:
    21510136
  • 财政年份:
    2009
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Excitonic nonlinearity in inorganic-organic quantum-well materials
无机-有机量子阱材料中的激子非线性
  • 批准号:
    15340103
  • 财政年份:
    2003
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了