Tailoring Quasi-Solid-State 'Water-in-Swelling-Clay' Electrolytes for High-Voltage, Durable Aqueous Zinc-Ion Batteries

为高压、耐用的水性锌离子电池定制准固态“膨胀粘土中的水”电解质

基本信息

  • 批准号:
    2324593
  • 负责人:
  • 金额:
    $ 58.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Batteries play a critical role in renewable energy storage and energy transition. To address the intermittent nature of wind and solar power generations, high-performance batteries are necessary to connect these renewable energy sources-based electricity generators to electric power grid. Aqueous zinc-ion batteries have recently attracted tremendous research interest because of their advantages such as low safety risks, abundant elemental resources, low cost, and eco-friendliness. However, their widespread use is limited due to their lower energy density and limited cycle life compared to state-of-the-art lithium-ion batteries. This project aims to develop high-voltage, durable, and cost-effective aqueous zinc-ion batteries by designing novel ‘water-in-swelling-clay’ electrolytes to address these issues. The knowledge obtained from this project will have a direct impact on alleviating power supply issues for efficient grid-scale energy storage and accelerate potential applications of the unique material design to other energy and environmental engineering fields such as adhesion and absorption. The project includes integrated outreach activities, such as research programs for local K-12 students and teachers, which can help students to acquire relevant knowledge and skills. This project will also enable the education and training of graduate and undergraduate students, including those from underrepresented groups, in the fields of materials and electrochemical energy storage.This project seeks to establish a fundamental understanding of the structure-property correlation of new, low-cost quasi-solid-state ‘water-in-swelling-clay’ electrolytes to achieve high voltage, high energy, and long cycle life of aqueous zinc-ion batteries for grid-scale energy storage. The rational electrolyte design strategy of tuning the atomic structures and interfacial chemistries of the swelling clay by chemical modifications is expected to effectively suppress water activities (e.g., decomposition), resulting in enhanced electrochemical performance of battery cells. The objectives of this proposal are to: (1) reveal fundamental mechanisms by multiscale modeling to understand and control the interactions among water molecules, clays, and ions that lead to high working voltage and enhanced energy density and cycle life of ‘water-in-swelling-clay’-based zinc-ion batteries, and (2) validate the modeling results by developing such high-voltage, durable aqueous batteries. The research approach is to integrate first-principles calculations, molecular dynamics simulations, phase-field modeling, and experimental validation of the advanced quasi-solid-state electrolytes, followed by the demonstration of high-performance battery cells. The gained fundamental knowledge promises to expedite the commercialization of aqueous zinc-ion batteries as competitive alternatives to lithium-ion batteries and address pressing issues in other aqueous electrochemical energy storage systems such as fuel cells and beyond-lithium batteries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电池在可再生能源储存和能源转型中发挥着关键作用。为了解决风能和太阳能发电的间歇性,需要高性能电池将这些基于可再生能源的发电机连接到电网。 近年来,由于其安全风险低、元素资源丰富、成本低、环境友好等优点,水基锌离子电池引起了人们极大的研究兴趣。然而,与最先进的锂离子电池相比,由于其较低的能量密度和有限的循环寿命,它们的广泛使用受到限制。该项目旨在通过设计新型的“膨胀粘土中的水”电解质来开发高电压,耐用和具有成本效益的水性锌离子电池,以解决这些问题。从该项目中获得的知识将对缓解有效电网规模储能的电力供应问题产生直接影响,并加速独特材料设计在其他能源和环境工程领域的潜在应用,如粘附和吸收。该项目包括综合外展活动,如为当地K-12学生和教师开展的研究项目,这些项目可以帮助学生获得相关知识和技能。该项目还将使研究生和本科生,包括那些来自代表性不足的群体,在材料和电化学储能领域的教育和培训。该项目旨在建立一个新的,低成本的准固态“膨胀粘土中的水”电解质的结构-性能相关性的基本理解,以实现高电压,高能量,以及用于电网规模能量存储的水性锌离子电池的长循环寿命。通过化学改性调整膨胀粘土的原子结构和界面化学的合理电解质设计策略预期有效地抑制水活性(例如,分解),导致电池单元的电化学性能增强。该提案的目的是:(1)通过多尺度建模揭示基本机制,以理解和控制水分子,粘土和离子之间的相互作用,从而导致高工作电压和增强的能量密度和基于“膨胀粘土中的水”的锌离子电池的循环寿命,以及(2)通过开发这种高电压,耐用的水性电池来验证建模结果。研究方法是整合先进准固态电解质的第一性原理计算,分子动力学模拟,相场建模和实验验证,然后是高性能电池的演示。获得的基础知识有望加速水溶液锌离子电池作为锂离子电池的竞争性替代品的商业化,并解决燃料电池和超锂电池等其他水溶液电化学储能系统中的紧迫问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guoping Xiong其他文献

Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery
  • DOI:
    https://doi.org/10.1021/acsnano.9b05703
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Shenghao Wu;Huachao Yang;Guoping Xiong;Yikuan Tian;Biyao Gong;Tengfei Luo;Timothy S. Fisher;Jianhua Yan;Kefa Cen;Zheng Bo;Kostya Ken Ostrikov
  • 通讯作者:
    Kostya Ken Ostrikov
Synthesis of graphene nanomaterials and their application in electrochemical energy storage
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoping Xiong
  • 通讯作者:
    Guoping Xiong
Scalable Production of Integrated Graphene Nanoarchitectures for Ultrafast Solar-Thermal Conversion and Vapor Generation
  • DOI:
    https://doi.org/10.1016/j.matt.2019.06.010
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Shenghao Wu;Guoping Xiong;Huachao Yang;Yikuan Tian;Biyao Gong;Huiwen Wan;Yan Wang;Timothy S.Fisher;Jianhua Yan;Kefa Cen;Zheng Bo;Kostya Ken Ostrikov
  • 通讯作者:
    Kostya Ken Ostrikov
Combinatorial atomistic-to-AI prediction and experimental validation of heating effects in 350 F supercapacitor modules
350 F 超级电容器模块热效应的组合原子到 AI 预测和实验验证
  • DOI:
    10.1016/j.ijheatmasstransfer.2021.121075
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zheng Bo;Haowen Li;Huachao Yang;Changwen Li;Shenghao Wu;Chenxuan Xu;Guoping Xiong;Davide Mariotti;Jianhua Yan;Kefa Cen;Kostya Ostrikov
  • 通讯作者:
    Kostya Ostrikov
Association of maternal neutrophil count in early pregnancy with the development of gestational diabetes mellitus: a prospective cohort study in China
妊娠早期母体中性粒细胞计数与妊娠期糖尿病发生的关系:中国的一项前瞻性队列研究
  • DOI:
    10.1080/09513590.2021.2025216
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Man Kong;Hongmei Zhang;Xianchang Liu;Yanyan Ge;Zhen Zhang;Rui Zhao;Yan Li;Shanshan Huang;Guoping Xiong;Xuefeng Yang;Liping Hao;Zhongxin Lu
  • 通讯作者:
    Zhongxin Lu

Guoping Xiong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

使用准勒夫波(Quasi-Love)研究西南极构造分界线
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一类无限维quasi-Toeplitz二次矩阵方程的数值解法及相关理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型单相储能型Quasi-Z源光伏系统双模式运行机理及优化控制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
传输噪声驱动的随机分数阶quasi-geostrophic方程
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
糠醇在铝基M-Quasi-MOF催化剂表面的氢解机理及其增产1,5-戊二醇的选择性调控
  • 批准号:
    22005342
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Quasi 2D-1D耦合水动力洪涝模拟系统的构建及关键技术研究
  • 批准号:
    51809049
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
一体化LC滤波器和Quasi-Z源的间接矩阵变换器及其在交流电机变频调速系统中应用的研究
  • 批准号:
    51477008
  • 批准年份:
    2014
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
  • 批准号:
    11426209
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于Quasi-Dyadic纠错码构造身份基公钥加密及身份认证方案研究
  • 批准号:
    61300229
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing commercially viable Quasi-Solid-State Li-S batteries for the Automotive market
为汽车市场开发商业上可行的准固态锂硫电池
  • 批准号:
    10040939
  • 财政年份:
    2023
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Collaborative R&D
High-performance quasi-solid-state zinc-ion capacitors coupling carbonaceous electrodes with eutectic hydrogel electrolytes
将碳质电极与共晶水凝胶电解质耦合的高性能准固态锌离子电容器
  • 批准号:
    577959-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Alliance Grants
Non-flammable quasi-solid electrolytes for lithium batteries
锂电池用不易燃准固体电解质
  • 批准号:
    DE220101093
  • 财政年份:
    2022
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Discovery Early Career Researcher Award
Transfer Mechanisms of Quasi-solid Ink Layers in Silicone-based Printing.
有机硅印刷中准固态墨层的转移机制。
  • 批准号:
    26889075
  • 财政年份:
    2014
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of all-solid-state multivalent-ion batteries using quasi-solid-state electrolytes containing room-temperature ionic liquid
使用含有室温离子液体的准固态电解质开发全固态多价离子电池
  • 批准号:
    25630437
  • 财政年份:
    2013
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of practical high efficiency and quasi solid-state dye-sensitized solar cell modules
实用高效准固态染料敏化太阳能电池组件的开发
  • 批准号:
    21560325
  • 财政年份:
    2009
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on rapid molecular diffusion and charge propagation in a quasi-solid of nanostructured polymers
纳米结构聚合物准固体中快速分子扩散和电荷传播的研究
  • 批准号:
    15550101
  • 财政年份:
    2003
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ITR: Development of an Integrated Tool for Modeling Quasi-static Deformation in the Solid Earth
ITR:开发模拟固体地球准静态变形的集成工具
  • 批准号:
    0313238
  • 财政年份:
    2003
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Standard Grant
High efficiency quasi-solid dye sensitized solar cells consisting of organic-inorganic hybrid ionic paths
由有机-无机杂化离子路径组成的高效准固体染料敏化太阳能电池
  • 批准号:
    17029051
  • 财政年份:
    2001
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Quasi-optical oscillator with a solid state device array at millimeter wavelengths
具有毫米波长固态器件阵列的准光振荡器
  • 批准号:
    09450134
  • 财政年份:
    1997
  • 资助金额:
    $ 58.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了