Efficient Computation of Generalized Persistence Diagrams

广义持久图的高效计算

基本信息

  • 批准号:
    2324632
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Topological data analysis (TDA) brings techniques from algebraic topology to the applied domains. It emphasizes methods that are stable, and as such resilient to noise in the data, as well as methods that are computationally efficient, and as such practical across a range of applications. Over the last two decades, TDA techniques have found applications in many domains, including biochemistry, cosmology, materials science, neuroscience, climate research, and many others. One significant limitation that practitioners encounter is that one of the main methods in TDA, persistent homology, is limited to studying one-parameter data, i.e., measurements of a single quantity. The focus of this project is that in practice, multiple measurements are available, and it is precisely the correlation between them that will be used to reveal important features of the problem. Software for practitioners using this methodology will be developed and the project will include graduate student training in topological data analysis.Recently, generalized persistent homology was introduced. It interprets persistence as a Moebius inversion of a certain function derived from the changes in topology of the data across parameters. The construction generalizes all the properties of 1-parameter persistence needed in applications, including stability and the particular structure of the diagrams used in machine learning and statistical pipelines. This project will develop a software implementation for computing generalized persistence diagrams, a crucial gap in this research program and the missing bridge between theory and applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拓扑数据分析(TDA)将代数拓扑学的技术引入到应用领域。它强调稳定的方法,因此对数据中的噪声具有弹性,以及计算效率高的方法,因此在一系列应用中具有实用性。在过去的二十年中,TDA技术已经在许多领域中得到应用,包括生物化学,宇宙学,材料科学,神经科学,气候研究等。从业者遇到的一个重要限制是TDA中的主要方法之一,持久同源性,仅限于研究单参数数据,即,测量一个单一的数量。这个项目的重点是,在实践中,多种测量是可用的,正是它们之间的相关性将被用来揭示问题的重要特征。 将为使用这种方法的从业人员开发软件,该项目将包括拓扑数据分析方面的研究生培训。它将持久性解释为某个函数的Moebius反演,该函数来自数据在参数之间的拓扑变化。该构造概括了应用程序中所需的单参数持久性的所有属性,包括稳定性以及机器学习和统计管道中使用的图的特定结构。 该项目将开发一个计算广义持久性图的软件实现,这是该研究计划中的一个关键差距,也是理论和应用之间缺失的桥梁。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitriy Morozov其他文献

Robust spatial memory maps encoded in networks with transient connections
在具有瞬态连接的网络中编码的鲁棒空间记忆映射
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Babichev;Dmitriy Morozov;Y. Dabaghian
  • 通讯作者:
    Y. Dabaghian
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior
迈向科学机器学习的基础模型:表征缩放和迁移行为
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shashank Subramanian;Peter Harrington;Kurt Keutzer;W. Bhimji;Dmitriy Morozov;Michael W. Mahoney;Amir Gholami;E. Pd
  • 通讯作者:
    E. Pd

Dmitriy Morozov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
  • 批准号:
    81903416
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Development of Global Optimization Methods by Generalized Eigenvalue Computation
通过广义特征值计算开发全局优化方法
  • 批准号:
    17H01699
  • 财政年份:
    2017
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Optimization Methods by Generalized Eigenvalue Computation
广义特征值计算的全局优化方法
  • 批准号:
    26540007
  • 财政年份:
    2014
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
New approximation algorithm for generalized function and its its application to numerical computation
广义函数逼近新算法及其在数值计算中的应用
  • 批准号:
    24540122
  • 财政年份:
    2012
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient one-way quantum computation with generalized measurements
具有广义测量的高效单向量子计算
  • 批准号:
    342437-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient one-way quantum computation with generalized measurements
具有广义测量的高效单向量子计算
  • 批准号:
    342437-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Nonlinear Models: Theory, Computation and Extensions
广义非线性模型:理论、计算和扩展
  • 批准号:
    EP/G056323/1
  • 财政年份:
    2009
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
Efficient one-way quantum computation with generalized measurements
具有广义测量的高效单向量子计算
  • 批准号:
    342437-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
  • 批准号:
    1001521
  • 财政年份:
    2009
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Efficient one-way quantum computation with generalized measurements
具有广义测量的高效单向量子计算
  • 批准号:
    342437-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了