Combinatorics: Thresholds and Hamming Cubes
组合学:阈值和汉明立方
基本信息
- 批准号:2324978
- 负责人:
- 金额:$ 17.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project focuses on problems on the borders of combinatorics and probability with connections to other areas. One major direction of the project is to deepen our understanding of the nature of random discrete structures. This is of central interest in probabilistic combinatorics, and the study of random discrete structures is also closely related to several other disciplines, including statistical physics and theoretical computer science. This area has gone through major progress in recent years, and the PI has been working towards a deeper understanding and further development of the new tools and techniques. The project also includes classical enumeration problems on several discrete structures that are closely related to computer science. Studying these problems has been developing lots of interesting and beautiful techniques that cut across mathematical boundaries. The project focuses on problems roughly relating to two topics. The first topic is the threshold phenomena of random discrete structures. A big goal here is to prove the Kahn-Kalai Conjecture, which concerns relationships between thresholds and expectation thresholds in random graphs and related systems. Other problems are mostly open questions about thresholds for increasing properties. In attacking these problems, the PI has been aiming to test the strength and limitations of the methods in the resolution of a conjecture of Talagrand, a fractional version of the Kahn-Kalai Conjecture. The second topic is asymptotic enumeration problems on the Hamming cube (and related structures), and related isoperimetric questions on the cube which are now of independent interest. Various tools (such as the graph container method, its combination with polymer models and cluster expansion method, stability for isoperimetric properties of the cube) are expected to be exploited and improved to solve the problems here.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目侧重于与其他领域的连接组合学和概率的边界问题。该项目的一个主要方向是加深我们对随机离散结构性质的理解。这是概率组合学的核心兴趣,随机离散结构的研究也与其他几个学科密切相关,包括统计物理学和理论计算机科学。近年来,这一领域取得了重大进展,PI一直致力于更深入地了解和进一步开发新的工具和技术。该项目还包括与计算机科学密切相关的几个离散结构上的经典枚举问题。研究这些问题已经开发了许多跨越数学边界的有趣而美丽的技术。该项目主要关注与两个主题大致相关的问题。第一个主题是随机离散结构的阈值现象。这里的一个大目标是证明Kahn-Kalai猜想,该猜想涉及随机图和相关系统中阈值和期望阈值之间的关系。其他问题大多是关于增加财产的阈值的开放性问题。在解决这些问题时,PI的目标是测试这些方法在解决塔拉格兰德猜想(Kahn-Kalai猜想的分数版本)时的强度和局限性。第二个主题是渐近枚举问题的汉明立方体(及相关结构),以及相关的等周问题的立方体,现在是独立的利益。各种工具(如图容器方法,其与聚合物模型和集群扩展方法的组合,立方体的等周特性的稳定性)预计将被开发和改进,以解决这里的问题。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinyoung Park其他文献
Familial Isolated Anorectal Malformation: A Case Report
家族性孤立性肛门直肠畸形:一例报告
- DOI:
10.13029/jkaps.2017.23.1.12 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jinyoung Park - 通讯作者:
Jinyoung Park
Response to Noninvasive Pco2 Monitoring During Sleep for Patients with Neuromuscular Disease.
神经肌肉疾病患者睡眠期间无创 Pco2 监测的反应。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3
- 作者:
Y. Won;W. Choi;J. Lee;J. Bach;Jinyoung Park;Seong - 通讯作者:
Seong
Revisit to scapular dyskinesis: three-dimensional wing computed tomography in prone position.
回顾肩胛运动障碍:俯卧位三维翼计算机断层扫描。
- DOI:
10.1016/j.jse.2013.08.016 - 发表时间:
2014 - 期刊:
- 影响因子:3
- 作者:
Jinyoung Park;Jung;K. Oh;Seong;Na Ra Kim;Myung - 通讯作者:
Myung
Correlation Between Sports-Related Maxillofacial Injuries and Head Injuries: A Five-Year Retrospective Study
运动相关颌面部损伤与头部损伤之间的相关性:五年回顾性研究
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Han;Jaiswai M. Shriya;Minjeong Jeon;N. Choi;Chun;Jinyoung Park;Dae - 通讯作者:
Dae
Prominent Cognitive Dysfunction without Motor Impairment Following Anterior Choroidal Artery Infarction: a Case Report
脉络膜前动脉梗塞后显着认知功能障碍但无运动障碍:病例报告
- DOI:
10.12786/bn.2016.9.e3 - 发表时间:
2016 - 期刊:
- 影响因子:5.7
- 作者:
T. Park;Jinyoung Park;Y. Park;Seo Yeon Yoon - 通讯作者:
Seo Yeon Yoon
Jinyoung Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinyoung Park', 18)}}的其他基金
Combinatorics: Thresholds and Hamming Cubes
组合学:阈值和汉明立方
- 批准号:
2153844 - 财政年份:2022
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
相似海外基金
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Collaborative Research: Climatic Control of Erosion Rates and Landscape Morphology - Quantifying the Influence of Fluvial Thresholds
合作研究:侵蚀率和景观形态的气候控制 - 量化河流阈值的影响
- 批准号:
2229224 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Lethal Psi: Characterising critical embolism thresholds for Amazon tree survival
Lethal Psi:描述亚马逊树木生存的关键栓塞阈值
- 批准号:
NE/X001164/1 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Research Grant
Biological investigation of autism spectrum disorder including diagnostic thresholds.
自闭症谱系障碍的生物学研究,包括诊断阈值。
- 批准号:
23H02835 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modeling, measurement and prediction of cardiac magneto-stimulation thresholds
心脏磁刺激阈值的建模、测量和预测
- 批准号:
10734438 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
CIVIC-FA Track A: Codeveloping local flood thresholds and high tide flooding predictions with community science and innovative technology
CIVIC-FA 轨道 A:与社区科学和创新技术共同开发当地洪水阈值和高潮洪水预测
- 批准号:
2321506 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Pinpointing Earth-System Thresholds for Anoxia with new Reconstructions of the Cretaceous Hothouse
通过白垩纪温室的新重建来确定地球系统缺氧的阈值
- 批准号:
EP/X025918/1 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Research Grant
Air Pollution and Risk of COPD: Investigation of harmful air pollutant(s) and thresholds of exposure levels, and sex-specific genetic susceptibility
空气污染和慢性阻塞性肺病的风险:有害空气污染物和暴露水平阈值以及特定性别遗传易感性的调查
- 批准号:
491668 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Operating Grants
Collaborative Research: Climatic Control of Erosion Rates and Landscape Morphology - Quantifying the Influence of Fluvial Thresholds
合作研究:侵蚀率和景观形态的气候控制 - 量化河流阈值的影响
- 批准号:
2229223 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Testing the role of nutrient input thresholds in governing microbial-mediated carbon sequestration for temperate peatlands
测试养分输入阈值在控制温带泥炭地微生物介导的碳封存中的作用
- 批准号:
NE/X010635/1 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Research Grant