eMB: Enhancing Mathematical Models to Investigate the Influences of Climate Change on Zoonotic Spillover
eMB:增强数学模型以研究气候变化对人畜共患病溢出效应的影响
基本信息
- 批准号:2325267
- 负责人:
- 金额:$ 26.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Most infectious disease outbreaks involve transmission from animals to humans, known as zoonotic spillover. Several studies provide evidence that climate change can influence the frequency and occurrence of zoonotic spillover. Nonetheless, current mathematical models have largely overlooked the effects of climate change on zoonotic spillover. By enhancing the modeling approaches, the researchers of this multidisciplinary project seek to understand what challenges zoonotic pathogens must overcome to transmit from wild animal hosts to humans or other animals, how climate change can reduce these challenges and make it more plausible for zoonotic pathogens to live within and between new species, and what kinds of environments have a higher likelihood of zoonotic spillover in the view of climate change. The research team will use decades of weather, wildlife population, and zoonotic disease data to identify significant variables that can be incorporated into the models and to accurately estimate epidemiological predictors of spillover (e.g., the force, speed, and direction of disease spread and the basic reproduction number) as functions of significant weather and environmental factors. The numerical simulations of the calibrated models will help the researchers elucidate the underlying mechanisms governing the ecology of zoonotic disease and predict possible influences of climate change. Furthermore, this study builds on the existing wave theory of pathogen and population dispersal to advance the theoretical knowledge of traveling and stationary waves, including their existence, uniqueness, stability, and asymptotic behaviors. The analytical and computational tools, template codes, and tutorials for enhanced modeling and simulating zoonotic spillover will be released on a GitHub page dedicated to this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数传染病暴发涉及从动物到人类的传播,称为人畜共患溢出。几项研究提供了证据,表明气候变化会影响人畜共患病的频率和发生。尽管如此,当前的数学模型在很大程度上忽略了气候变化对人畜共动性溢出的影响。 By enhancing the modeling approaches, the researchers of this multidisciplinary project seek to understand what challenges zoonotic pathogens must overcome to transmit from wild animal hosts to humans or other animals, how climate change can reduce these challenges and make it more plausible for zoonotic pathogens to live within and between new species, and what kinds of environments have a higher likelihood of zoonotic spillover in the view of climate change.研究小组将利用数十年的天气,野生动植物种群和人畜共患病数据来确定可以纳入模型中的重要变量,并准确估计溢出的流行病学预测因子(例如,疾病的力量,速度和疾病的方向以及基本的繁殖数量和基本的繁殖数量),作为重要的天气和环境因素的功能。 校准模型的数值模拟将有助于研究人员阐明管理人畜共患病生态的潜在机制,并预测气候变化的可能影响。 此外,这项研究基于现有的病原体和种群散布的波浪理论,以促进旅行和固定波的理论知识,包括它们的存在,独特性,稳定性和渐近行为。用于增强建模和模拟人畜共患模型的分析和计算工具,模板代码和教程将在专门针对该项目的GitHub页面上发布。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查审查的评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Majid Bani-Yaghoub其他文献
Effectiveness of control and preventive measures influenced by pathogen trait evolution: Example of <em>Escherichia coli O157:H7</em>
- DOI:
10.1016/j.cam.2018.09.008 - 发表时间:
2019-12-15 - 期刊:
- 影响因子:
- 作者:
Majid Bani-Yaghoub;Xueying Wang;Patrick O. Pithua;Sharif S. Aly - 通讯作者:
Sharif S. Aly
Majid Bani-Yaghoub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
理想格数学问题分析及隐私增强密码若干问题研究
- 批准号:61877011
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:面上项目
二维表面增强拉曼定性和定量检测妇科多肿瘤标志物研究
- 批准号:21705112
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于雾、霾、弱光三因子的图像雾霾去除
- 批准号:61372145
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
肾间质容量对动态增强MR肾图测量猪肾小球滤过率准确性的影响:不同数学模型对比
- 批准号:81171316
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
光子晶体中非线性光学效应增强及晶格结构设计的数学和计算研究
- 批准号:11171040
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Developing Virtual Reality-Mediated Representational Tools for Supporting and Enhancing Deep Mathematical Understanding of Linear Algebra Relationships
开发虚拟现实介导的表示工具来支持和增强对线性代数关系的深入数学理解
- 批准号:
2315756 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Enhancing Precision Sleep Medicine in traumatic Brain Injury: Examining the feasibility of Home-Based Measurement of Circadian Timing
加强创伤性脑损伤的精准睡眠医学:检验家庭昼夜节律测量的可行性
- 批准号:
10700406 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
MATRIX: enhancing access to global research in the mathematical sciences
MATRIX:增强数学科学研究的全球性
- 批准号:
LE220100107 - 财政年份:2022
- 资助金额:
$ 26.5万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Enhancing Understanding of Long COVID Using Novel Mathematical Clustering Techniques
使用新颖的数学聚类技术增强对长期新冠肺炎的理解
- 批准号:
2738361 - 财政年份:2022
- 资助金额:
$ 26.5万 - 项目类别:
Studentship