Microcirculation and oxygen transport through the diffuse-domain lens
通过扩散域透镜的微循环和氧气输送
基本信息
- 批准号:2325419
- 负责人:
- 金额:$ 32.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to investigate how the complex flow and transport processes that occur in microvascular networks regulate vessel remodeling. By integrating a novel computational model with high-resolution imaging data, the project will help unveil mechanisms underlying both structural adaptation of blood vessels and the crucial role of oxygen transport in tissue function. This project will lead to a better understanding of the relationship between blood flow, vascular remodeling, and oxygen transport that may lead to advancements in wound healing strategies, tissue engineering approaches, and the development of artificial organs. The research program will involve graduate and undergraduate students and outreach efforts based on creating an interactive visualization of the circulatory system for local high school students.Vascular networks undergo structural adaptation driven by mechanical and metabolic cues, including vessel growth, shrinkage, and pruning. Microvascular networks undergo rapid and significant changes, making vascular remodeling a critical element of the flow and transport dynamics. While the circulatory system has been extensively studied, the flow and transport processes that occur within microvascular networks and their influence on vascular remodeling are poorly understood. In particular, the role of three-dimensional geometry, transvascular and extravascular flow in blood dynamics and oxygen transport on microvascular networks that are undergoing remodeling has been understudied partially because of limitations of existing computational methods. To bridge this gap, a unique computational method based on integration with in vivo imaging data through the diffuse-domain approach will be developed in this project. The model will lead to new fundamental understanding of the flow and transport processes that control structural adaptation of microvascular networks. This research has significant implications in diverse disciplines, offering a valuable tool to explore the intricate flow and transport processes in microvascular networks and their role in different biological phenomena, including wound healing and tissue regeneration. The project may also lead to advances in drug delivery and organoid development. The project will also use the data obtained from 3D simulations to produce an interactive visualization using a video game engine that will be presented in a local High School.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在研究微血管网络中发生的复杂的流动和运输过程如何调节血管重塑。通过将新的计算模型与高分辨率成像数据相结合,该项目将有助于揭示血管结构适应和氧运输在组织功能中的关键作用的潜在机制。这一项目将有助于更好地理解血液流动、血管重塑和氧气运输之间的关系,这可能会导致伤口愈合策略、组织工程方法和人造器官发展的进步。这项研究计划将涉及研究生和本科生,以及基于为当地高中生创建循环系统的交互式可视化的推广工作。血管网络经历机械和新陈代谢线索驱动的结构性适应,包括血管生长、收缩和修剪。微血管网络经历了快速而显著的变化,使血管重塑成为流动和运输动力学的关键因素。虽然循环系统已经得到了广泛的研究,但对微血管网络中发生的流动和运输过程及其对血管重构的影响却知之甚少。特别是,由于现有计算方法的局限性,三维几何结构、跨血管和血管外流动在血液动力学和微血管网络上的氧气运输中的作用一直被研究不足。为了弥补这一差距,本项目将开发一种独特的计算方法,该方法基于通过扩散域方法与体内成像数据的集成。该模型将导致对控制微血管网络结构适应的流动和运输过程的新的基本理解。这项研究在不同的学科中都有重要的意义,为探索微血管网络中复杂的流动和运输过程及其在不同生物现象中的作用提供了宝贵的工具,包括伤口愈合和组织再生。该项目还可能在药物输送和有机化合物开发方面取得进展。该项目还将使用3D模拟获得的数据,使用视频游戏引擎产生交互式可视化,并将在当地一所高中展示。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hector Gomez其他文献
The Role of Absorbed Energy on Oscillation Mode of an Air Bubble in a Cavitation-Induced Acoustic Field
吸收能量对空化引起的声场中气泡振荡模式的作用
- DOI:
10.2139/ssrn.4100217 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Eshraghi;S. Bhattacharya;Lalit K. Rajendran;Hector Gomez;P. Vlachos - 通讯作者:
P. Vlachos
Thin-film model of droplet durotaxis
- DOI:
10.1140/epjst/e2019-900127-x - 发表时间:
2020-02-11 - 期刊:
- 影响因子:2.300
- 作者:
Hector Gomez;Mirian Velay-Lizancos - 通讯作者:
Mirian Velay-Lizancos
Combined modulation of SHH and FGF signaling is crucial for maintenance of the neocortical progenitor specification program
SHH 和 FGF 信号传导的联合调节对于维持新皮质祖细胞规范程序至关重要
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
O. Yabut;H. Ng;K. Yoon;Hector Gomez;Jessica Arela;S. Pleasure - 通讯作者:
S. Pleasure
Editor's Summary and Q&A: Engineered cartilage heals skull defects
- DOI:
10.1016/j.ajodo.2009.10.001 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:
- 作者:
Lan Doan;Connor Kelley;Heather Luong;Jeryl English;Hector Gomez;Evan Johnson;Dianna Cody;Pauline Jackie Duke - 通讯作者:
Pauline Jackie Duke
A Computational Model to Unveil the Role of the Nucleus in 2D Cell Migration
- DOI:
10.1016/j.bpj.2018.11.679 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Adrian Mourer Rosende;Hector Gomez - 通讯作者:
Hector Gomez
Hector Gomez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hector Gomez', 18)}}的其他基金
Collective Migration of Loosely Connected Cell Clusters
松散连接的细胞簇的集体迁移
- 批准号:
1952912 - 财政年份:2020
- 资助金额:
$ 32.02万 - 项目类别:
Standard Grant
Interaction of multiphase fluids and solids at the microscale
微尺度多相流体和固体的相互作用
- 批准号:
2012242 - 财政年份:2020
- 资助金额:
$ 32.02万 - 项目类别:
Standard Grant
Unveiling the Role of Interstitial Flow in Angiogenesis through Phase-Field Simulations
通过相场模拟揭示间质流在血管生成中的作用
- 批准号:
1852285 - 财政年份:2019
- 资助金额:
$ 32.02万 - 项目类别:
Standard Grant
Miscibility-immiscibility conundrum in air-liquid-vapor flow modeling: Bridging the gap by using the phase-field method
空气-液体-蒸汽流建模中的混溶性与不混溶性难题:使用相场方法弥合差距
- 批准号:
1805817 - 财政年份:2018
- 资助金额:
$ 32.02万 - 项目类别:
Standard Grant
相似国自然基金
晶态-非晶态相界面的构建及其析氧LOM机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Beclin1复合体在神经酰胺三己糖苷诱导Fabry病自噬障碍中的调控作用及机制研究
- 批准号:81100840
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
固态核磁共振和密度泛函计算在纳米银催化剂中的研究
- 批准号:21103162
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新型Sn—O簇及功能化Sn—O簇的研究
- 批准号:20471014
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Multi-Scale Continuous Capillary Modelling of Oxygen Transport within the Microcirculation
微循环内氧气输送的多尺度连续毛细管建模
- 批准号:
566130-2021 - 财政年份:2021
- 资助金额:
$ 32.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Vascular dysfunction in coronary microcirculation
冠状动脉微循环血管功能障碍
- 批准号:
10539280 - 财政年份:2021
- 资助金额:
$ 32.02万 - 项目类别:
Vascular dysfunction in coronary microcirculation
冠状动脉微循环血管功能障碍
- 批准号:
10361862 - 财政年份:2021
- 资助金额:
$ 32.02万 - 项目类别:
Hydrogen Peroxide and Flow-Induced Dilation of Human Coronary Microcirculation
过氧化氢和血流引起的人体冠状动脉微循环扩张
- 批准号:
8208170 - 财政年份:2009
- 资助金额:
$ 32.02万 - 项目类别:
Hydrogen Peroxide and Flow-Induced Dilation of Human Coronary Microcirculation
过氧化氢和血流引起的人体冠状动脉微循环扩张
- 批准号:
8011193 - 财政年份:2009
- 资助金额:
$ 32.02万 - 项目类别:
Flow regulation and oxygen transport in microcirculation
微循环中的流量调节和氧气输送
- 批准号:
6877175 - 财政年份:2002
- 资助金额:
$ 32.02万 - 项目类别:
NO in Tumor Angiogenesis,Microcirculation & Rad.Therapy
NO在肿瘤血管生成、微循环中的作用
- 批准号:
7071781 - 财政年份:2002
- 资助金额:
$ 32.02万 - 项目类别:
Flow regulation and Oxygen transpot in microcirculation
微循环中的流量调节和氧气输送
- 批准号:
7417837 - 财政年份:2002
- 资助金额:
$ 32.02万 - 项目类别:
Flow regulation and oxygen transport in microcirculation
微循环中的流量调节和氧气输送
- 批准号:
7886941 - 财政年份:2002
- 资助金额:
$ 32.02万 - 项目类别:
NO in Tumor Angiogenesis,Microcirculation & Rad.Therapy
NO在肿瘤血管生成、微循环中的作用
- 批准号:
6522149 - 财政年份:2002
- 资助金额:
$ 32.02万 - 项目类别:














{{item.name}}会员




