Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media

合作研究:非厄米光子介质中新型共振的第一性原理控制

基本信息

  • 批准号:
    2326698
  • 负责人:
  • 金额:
    $ 30.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Nontechnical description: This NSF award supports an integrated research, education, and outreach project that focuses on studying a novel behavior of light within solid materials. Optical science has long pursued the ability to manipulate various properties of light and other invisible waves, such as infrared light and microwaves. Traditional examples include bending light with mirrors and lenses and generating light with lasers and LEDs. This project adopts a unique approach by delving into the exploration of how the active property of optical materials, specifically their suitability for attenuation or amplification of light, can profoundly transform their interactions with the environment. This aspect, which has received limited investigation in the past, presents a compelling avenue for understanding and harnessing the dynamic behavior of light in novel ways. The outcomes of this investigation are expected to deliver a new type of light-matter interaction, thereby advancing our fundamental understanding of optics, physics, materials science, and optoelectronics. Moreover, by introducing a novel paradigm for how light perceives its environment, the project aims to significantly enhance the functionality of photonic devices used in optical communications and computing. This includes the development of an ultra-broadband tunable laser capable of achieving a wavelength tuning range surpassing the current state-of-the-art, by more than one order of magnitude. These advancements have far-reaching implications across industries and in our daily lives. Leveraging the resources of the City University of New York, the largest urban university system in the US, and the University of Pennsylvania, a national leader in education innovation, the researchers will collaborate with multiple outreach units to increase awareness and interest in modern optics and photonics among K-12 students in New York City and the greater Philadelphia area. This interdisciplinary project also provides valuable research opportunities for graduate, undergraduate, and advanced high-school students, with a focus on recruiting and mentoring students from underrepresented groups in STEM.Technical description: Traditionally, the interaction between light and matter occurs when an oscillating electromagnetic field resonantly engages with charged particles, such as dipoles in dielectrics. This interaction can be modeled using coupled oscillators, where the passive photonic modes represent the electromagnetic environment defined by the real part of the matter's refractive index. Two types of light-matter interactions are typically defined based on the coupling strength between matter and photonic modes. However, these definitions overlook an important aspect of matter: the imaginary part of the matter’s refractive index, i.e., optical gain and loss, which can significantly impact their interactions. In this collaborative project, the principal investigators aim to establish a complex non-Hermitian photonic environment through first-principle control of the imaginary part of the refractive index. The results showcase a novel type of light-matter interaction that is exclusively governed by the system's non-Hermiticity, arising from previously unexplored photonic active resonances. The project combines integrated theoretical and experimental research to design photonic active resonators through strategic waveguide mode engineering on the III-V semiconductor platform to unravel their unique properties and further leverage them for the development of robust intrinsic single-mode lasing with an ultra-broadband tunability. These advancements will lay the groundwork for a new generation of integrated photonic devices for optical communication and computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:该奖项支持一个综合性的研究,教育和推广项目,重点是研究固体材料中光的新行为。长期以来,光学科学一直在追求操纵光和其他不可见波(如红外光和微波)的各种特性的能力。传统的例子包括用镜子和透镜弯曲光,用激光和LED产生光。该项目采用独特的方法,深入探索光学材料的活性特性,特别是它们对光的衰减或放大的适用性,如何深刻地改变它们与环境的相互作用。这方面,这在过去已经收到有限的调查,提出了一个令人信服的途径,以理解和利用光的动态行为的新方法。这项研究的结果有望提供一种新型的光-物质相互作用,从而推进我们对光学、物理学、材料科学和光电子学的基本理解。此外,通过引入光如何感知其环境的新范式,该项目旨在显着增强光通信和计算中使用的光子器件的功能。这包括超宽带可调谐激光器的发展,能够实现超过当前最先进的波长调谐范围,超过一个数量级。这些进步对各行各业和我们的日常生活产生了深远的影响。利用美国最大的城市大学系统纽约城市大学和全国教育创新领导者宾夕法尼亚大学的资源,研究人员将与多个外展单位合作,提高纽约市和大费城地区K-12学生对现代光学和光子学的认识和兴趣。这个跨学科的项目也为研究生、本科生和高中生提供了宝贵的研究机会,重点是招募和指导STEM领域代表性不足的群体的学生。技术描述:传统上,当振荡的电磁场与带电粒子(如偶极子)共振时,光和物质之间发生相互作用。这种相互作用可以使用耦合振荡器来建模,其中无源光子模式表示由物质折射率的真实的部分定义的电磁环境。两种类型的光-物质相互作用通常基于物质和光子模式之间的耦合强度来定义。然而,这些定义忽略了物质的一个重要方面:物质折射率的虚部,即,光学增益和损耗,这会显著影响它们的相互作用。在这个合作项目中,主要研究人员的目标是通过折射率虚部的第一原理控制来建立一个复杂的非厄米光子环境。这些结果展示了一种新型的光-物质相互作用,这种相互作用完全由系统的非厄米性所控制,这种非厄米性是由以前未探索过的光子有源共振所引起的。该项目结合了综合的理论和实验研究,通过III-V半导体平台上的战略波导模式工程设计光子有源谐振器,以揭示其独特的特性,并进一步利用它们开发具有超宽带可调谐性的鲁棒本征单模激光。这些进步将为新一代光通信和计算集成光子器件奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Ge其他文献

Synergetic Effect of Chloride Doping and CH3NH3PbCl3 on CH3NH3PbI3-xClx Perovskite-Based Solar Cells
氯化物掺杂和 CH3NH3PbCl3 对 CH3NH3PbI3-xClx 钙钛矿太阳能电池的协同效应
  • DOI:
    10.1002/cssc.201700487
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Xu Feng;Zhang Taiyang;Li Ge;Zhao Yixin
  • 通讯作者:
    Zhao Yixin
As40S59Se1/As2S3 step index fiber for 1-5 mu m supercontinuum generation
用于 1-5 μm 超连续谱产生的 As40S59Se1/As2S3 阶跃折射率光纤
  • DOI:
    10.1016/j.jnoncrysol.2016.07.042
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tang Junzhou;Liu Shuo;Zhu Qingde;Sun Yanan;Li Ge;Yang Zhiyong;Zhang Xianghua;Wang Xunsi;Zhang Peiqing;Dai Shixun;Xu Yinsheng
  • 通讯作者:
    Xu Yinsheng
Parameter Analysis for Arc Snubber of EAST Neutral Beam Injector
EAST中性束注入器消弧器参数分析
  • DOI:
    10.1088/1009-0630/12/4/22
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Wang Haitian;Li Ge;C. Liang;Dang Xiaoqiang;Fu Peng
  • 通讯作者:
    Fu Peng
Experimental evaluation of acceleration waveform replication on electrohydraulic shaking tables: A review
电液振动台上加速度波形复制的实验评估:综述

Li Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Ge', 18)}}的其他基金

CAREER: Topology and Symmetry Enabled Phenomena in Lasers and Other Non-Hermitian Photonic Media
职业:激光器和其他非厄米光子介质中的拓扑和对称现象
  • 批准号:
    1847240
  • 财政年份:
    2019
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigation of Rotation-Time and Inversion-Time Symmetries in Photonic Materials
合作研究:光子材料中旋转时间和反转时间对称性的研究
  • 批准号:
    1506987
  • 财政年份:
    2015
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308669
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326699
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Weaving Together Supports for the Academic Success and Racial Identity Development of Low Income and First Generation AA&NHPI Students
合作研究:共同支持低收入和第一代 AA 的学业成功和种族认同发展
  • 批准号:
    2315868
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308670
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321341
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321342
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321343
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
The First CAN-ACT Registry National Investigator Meeting: A Collaborative Journey Towards Advancing Heritable Aortopathy Research and Patient Care in Canada
首届 CAN-ACT 注册国家研究者会议:推进加拿大遗传性主动脉病研究和患者护理的合作之旅
  • 批准号:
    487857
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Miscellaneous Programs
Collaborative Research: Weaving Together Supports for the Academic Success and Racial Identity Development of Low Income and First Generation AA&NHPI Students
合作研究:共同支持低收入和第一代 AA 的学业成功和种族认同发展
  • 批准号:
    2315869
  • 财政年份:
    2023
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了