EAGER: Mechanistic and Stability Studies over Dual-Function Materials for CO2 Capture and Conversion

EAGER:二氧化碳捕获和转化双功能材料的机理和稳定性研究

基本信息

  • 批准号:
    2327505
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The project investigates the chemical reaction of carbon dioxide (CO2), a greenhouse gas, with hydrogen (H2) to produce methanol for either energy generation (via methanol fuel cells) or use as a platform chemical for the synthesis of a wide range of fuel and chemical products. Novel features associated with this Early-concept Grant for Exploratory Research (EAGER) project include 1) exploring a reaction engineering approach involving cyclic CO2 capture-conversion enabled by dual reactors and 2) incorporating new experimental capabilities allowing research at high pressures characteristic of commercial reactors. More broadly, the project investigates a strategy to close the carbon cycle by in-situ capture of produced CO2 and its conversion with H2 (obtained from water using sustainable energy) to methanol. The EAGER project is a spinoff from the investigator's CAREER project. The CAREER project is focused on the synthesis and evaluation of dual-function materials (DFMs) capable of both capturing and converting CO2, with corresponding benefits of avoiding energy demands, corrosion, and transportation issues associated with CO2 capture and sequestration. The project fulfills the EAGER criteria in that the transformative potential is weighed against the inherent risk associated with kinetic and thermodynamic challenges in converting waste CO2 to methanol and other high-value molecules. The project thus provides an entry point to circularity in low- or net-zero greenhouse gas production of chemicals and fuels. For example, in the fuel case, the combustion of methanol (or derivative fuel products) will generate CO2 that can be cycled back to methanol via the starting reaction. The project will develop methods to conduct CO2 capture-conversion cyclic studies in such a way that the CO2 capture takes place in the first reactor while the conversion occurs in the second one, with switching every few minutes. From an energetic point of view, the system benefits from operation under isothermal and isobaric conditions. The project is enhanced by technical expertise brought by an experienced post-doctoral associate, who will be mentored by the PI in developing leadership and project management skills needed for a successful independent research career.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了温室气体二氧化碳(CO2)与氢气(H2)的化学反应,以产生甲醇,用于发电(通过甲醇燃料电池)或用作合成各种燃料和化学产品的平台化学品。这个探索性研究(EAGER)项目的新特点包括:1)探索一种反应工程方法,包括通过双反应堆实现循环二氧化碳捕获转换;2)结合新的实验能力,允许在商业反应堆的高压特性下进行研究。更广泛地说,该项目研究了一种通过原位捕获产生的二氧化碳并将其与H2(使用可持续能源从水中获得)转化为甲醇来关闭碳循环的策略。EAGER项目是从研究者的CAREER项目衍生出来的。CAREER项目的重点是能够捕获和转化二氧化碳的双功能材料(dfm)的合成和评估,其相应的好处是避免与二氧化碳捕获和封存相关的能源需求、腐蚀和运输问题。该项目符合EAGER标准,因为将转化潜力与将废二氧化碳转化为甲醇和其他高价值分子的动力学和热力学挑战相关的固有风险进行了权衡。因此,该项目为化学品和燃料的低温室气体生产或净零温室气体生产提供了一个切入点。例如,在燃料的情况下,甲醇(或衍生燃料产品)的燃烧将产生二氧化碳,可以通过启动反应循环回甲醇。该项目将开发进行二氧化碳捕获-转换循环研究的方法,以这样一种方式,二氧化碳捕获在第一个反应堆进行,而转换在第二个反应堆进行,每隔几分钟切换一次。从能量的角度来看,系统在等温和等压条件下运行是有益的。该项目由一位经验丰富的博士后助理带来的技术专长加强,他将在PI的指导下发展成功的独立研究事业所需的领导和项目管理技能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ana Alba-Rubio其他文献

Ana Alba-Rubio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ana Alba-Rubio', 18)}}的其他基金

CAREER: Dual Function Materials for Capture and Conversion of CO2 into Methanol and Higher Alcohols
职业:用于捕获二氧化碳并将其转化为甲醇和高级醇的双功能材料
  • 批准号:
    2154386
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: Dual Function Materials for Capture and Conversion of CO2 into Methanol and Higher Alcohols
职业:用于捕获二氧化碳并将其转化为甲醇和高级醇的双功能材料
  • 批准号:
    1847391
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似海外基金

DMS/NIGMS 2: A Stability Driven Recommendation System for Efficient Disease Mechanistic Discovery
DMS/NIGMS 2:用于高效疾病机制发现的稳定性驱动推荐系统
  • 批准号:
    10793779
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
Mechanistic insight into genome stability pathways
对基因组稳定性途径的机制洞察
  • 批准号:
    10205825
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
Mechanistic insight into genome stability pathways
对基因组稳定性途径的机制洞察
  • 批准号:
    10763597
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
Understanding the mechanistic role of genome stability pathways in regulating cell homeostasis
了解基因组稳定性途径在调节细胞稳态中的机制作用
  • 批准号:
    10393487
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
Fibrinogen-targeted conformational proteins for identification of the mechanistic pathways controlling fibrin network stability
纤维蛋白原靶向构象蛋白用于鉴定控制纤维蛋白网络稳定性的机制途径
  • 批准号:
    BB/T013583/1
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Research Grant
Mechanistic insight into genome stability pathways
对基因组稳定性途径的机制洞察
  • 批准号:
    10402940
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
Understanding the mechanistic role of genome stability pathways in regulating cell homeostasis
了解基因组稳定性途径在调节细胞稳态中的机制作用
  • 批准号:
    10574614
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
Mechanistic insight into genome stability pathways
对基因组稳定性途径的机制洞察
  • 批准号:
    10624856
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
Mechanistic analysis of microtubule dynamics and stability in neurons
神经元微管动力学和稳定性的机制分析
  • 批准号:
    10536622
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
Mechanistic analysis of microtubule dynamics and stability in neurons
神经元微管动力学和稳定性的机制分析
  • 批准号:
    10318224
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了