Eco-Design of Hydrogenation Catalysts for Oxyanion Reduction: The Overlooked Roles of Nitrogen-Containing Groups on the Catalyst Supports

用于氧阴离子还原的加氢催化剂的生态设计:含氮基团在催化剂载体上被忽视的作用

基本信息

  • 批准号:
    2327715
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Toxic oxyanions such as nitrate (NO3−) and perchlorate (ClO4−) are persistent pollutants that have been detected in groundwater, surface water, and drinking water sources in the United States and worldwide. The consumption of drinking water containing toxic oxyanions can adversely impact human health. Ion exchange (IX) and reverse osmosis (RO) are the best commercially available technologies for removing toxic oxyanions from drinking water sources. However, IX and RO do not destroy contaminants. In addition, they generate residuals including concentrated waste brines that need to be treated and/or disposed of. Water treatment by catalytic hydrogenation has emerged as a promising technology that can rapidly and effectively destroy toxic oxyanions in contaminated aqueous solutions including concentrated waste brines. The most effective oxyanion hydrogenation catalysts (e.g., Pd) are in the form of nanoparticles. Anchoring catalytic nanoparticles on supports such as activated carbon can facilitate their use in water treatment. In this project, the Principal Investigators (PIs) propose to carry out a fundamental study of the activity and reactivity of Pd nanoparticles immobilized onto supports that contain nitrogen groups in aqueous solutions and brines contaminated by toxic oxyanions with the goal of improving their performance. The successful completion of this research will benefit society through the development of new fundamental knowledge to advance the design and development of more efficient and cost-effective oxyanion hydrogenation catalysts for water treatment. Additional benefits to society will be achieved through student education and training including the mentoring of one graduate student and one undergraduate student at the South Dakota School of Mines and Technology and one postdoctoral researcher at the University of Alabama.Palladium (Pd) nanoparticles have emerged as promising catalysts for reducing toxic oxyanions such as nitrate (NO3−) in aqueous solutions/brines and converting them to harmless by-products such as dinitrogen (N2) gas. Pd nanocatalysts are immobilized on support materials to 1) reduce nanoparticle aggregation and leaching and 2) facilitate catalyst handling and reuse. The presence of nitrogen-containing groups (e.g., amines) on the supports of Pd nanocatalysts have been found to significantly enhance catalyst performance (including activity, selectivity, and stability) during the hydrogenation of oxyanions in aqueous solutions. However, a fundamental understanding of the role of nitrogen-containing groups (NCGs) on the structure and performance of Pd hydrogenation nanocatalysts has remained elusive. To address these knowledge gaps, the Principal Investigators (PIs) of this project propose to carry out fundamental studies of the structure and performance of Pd nanocatalysts immobilized onto supports with NCGs. The specific objectives of the research are to 1) characterize and unravel the relationships between NCG support and catalyst structure and physicochemical properties; 2) investigate the impact of NCG support on the performance of Pd nanocatalysts for the reduction and conversion of oxyanions in model aqueous solutions and complex water matrices using hydrogen (H2) as reducing agent ; and 3) leverage the data collected in this project to develop machine learning (ML)-informed life cycle assessment (LCA) to guide catalyst design, synthesis, and optimization. The successful completion of this project has the potential to advance the practical implementation of Pd-based catalysts and reactors for the treatment of drinking water sources and concentrated waste brines contaminated with toxic oxyanions. To implement the education and training goals of the project, the PIs propose to leverage existing programs at the South Dakota School of Mines and Technology and the University of Alabama to 1) recruit and mentor graduate and undergraduate students from underrepresented groups to work on the project and 2) develop and implement outreach activities to advance diversity, equity, and inclusion in STEM education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有毒的含氧阴离子,如硝酸盐(NO3−)和高氯酸盐(ClO 4 −)是在美国和世界各地的地下水,地表水和饮用水源中检测到的持久性污染物。饮用含有有毒含氧阴离子的饮用水会对人体健康产生不利影响。离子交换(IX)和反渗透(RO)是去除饮用水源中有毒含氧阴离子的最佳商业技术。然而,IX和RO不破坏污染物。此外,它们产生残余物,包括需要处理和/或处置的浓缩废盐水。通过催化氢化的水处理已经成为一种有前途的技术,其可以快速有效地破坏包括浓缩废盐水在内的污染水溶液中的有毒含氧阴离子。最有效的氧阴离子氢化催化剂(例如,Pd)是纳米颗粒的形式。将催化纳米颗粒吸附在活性炭等载体上可以促进其在水处理中的应用。在该项目中,主要研究人员(PI)建议对固定在含有氮基团的支持物上的Pd纳米颗粒在水溶液和受有毒含氧阴离子污染的盐水中的活性和反应性进行基础研究,以提高其性能。这项研究的成功完成将通过开发新的基础知识来促进水处理用更高效和更具成本效益的含氧阴离子加氢催化剂的设计和开发,从而造福社会。通过学生教育和培训,包括指导南达科他州矿业与技术学院的一名研究生和一名本科生以及亚拉巴马大学的一名博士后研究员,将为社会带来额外的好处。钯(Pd)纳米颗粒已成为有前途的催化剂,用于还原水溶液/盐水中的有毒含氧阴离子,如硝酸盐(NO3−),并通过以下方式将其转化为无害的含氧阴离子:例如二氮(N2)气体的产物。将Pd纳米催化剂固定在载体材料上以1)减少纳米颗粒聚集和浸出和2)促进催化剂处理和再利用。含氮基团(例如,已经发现在Pd纳米催化剂的载体上的胺)在含氧阴离子在水溶液中的氢化期间显著增强催化剂性能(包括活性、选择性和稳定性)。然而,含氮基团(NCG)对Pd加氢纳米催化剂的结构和性能的作用的基本理解仍然是难以捉摸的。为了解决这些知识差距,该项目的主要研究者(PI)建议对固定在NCG支持物上的Pd纳米催化剂的结构和性能进行基础研究。本研究的具体目标是:1)表征和揭示NCG载体与催化剂结构和物理化学性质之间的关系; 2)研究NCG载体对Pd纳米催化剂在模拟水溶液和复杂水基质中以氢气(H2)为还原剂还原和转化含氧阴离子的性能的影响; 3)利用本项目中收集的数据开发机器学习(ML)知情的生命周期评估(LCA),以指导催化剂设计、合成和优化。 该项目的成功完成有可能推动钯基催化剂和反应器的实际应用,用于处理饮用水源和受有毒含氧阴离子污染的浓缩废盐水。为了实现该项目的教育和培训目标,PI建议利用南达科他州矿业与技术学院和亚拉巴马大学的现有项目,1)从代表性不足的群体中招募和指导研究生和本科生从事该项目,2)开发和实施推广活动,以促进多样性,公平,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Ye其他文献

Electrochemically Derived Graphene-Like Carbon Film as a Superb Substrate for High-Performance Aqueous Zn-Ion Batteries
电化学衍生的类石墨烯碳膜作为高性能水系锌离子电池的优质基底
  • DOI:
    10.1002/adfm.201907120
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Wu Yunzhao;Wang Mingchao;Tao Ye;Zhang Kai;Cai Molang;Ding Yong;Liu Xuepeng;Hayat Tasawar;Alsaedi Ahmed;Dai Songyuan
  • 通讯作者:
    Dai Songyuan
Efficient Micro/Nanoparticle Concentration using Direct Current-Induced Thermal Buoyancy Convection for Multiple Liquid Media
利用直流电引起的热浮力对流对多种液体介质进行高效的微米/纳米粒子浓缩
  • DOI:
    10.1021/acs.analchem.8b05105
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zhang Kailiang;Ren Yukun;Tao Ye;Liu Weiyu;Jiang Tianyi;Jiang Hongyuan
  • 通讯作者:
    Jiang Hongyuan
Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai
从上海次生无机气溶胶季节变化洞察不同硝酸盐形成机制
  • DOI:
    10.1016/j.atmosenv.2016.09.012
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Tao Ye;Ye Xingnan;Ma Zhen;Xie Yuanyuan;Wang Ruyu;Chen Jianmin;Yang Xin;Jiang Shuqin
  • 通讯作者:
    Jiang Shuqin
Is China’s carbon neutrality commitment truly credible? Evidence from a natural experiment
中国的碳中和承诺真的可信吗?
  • DOI:
    10.1016/j.frl.2022.103284
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Wen Gao;Maobin Wang;Tao Ye
  • 通讯作者:
    Tao Ye

Tao Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Ye', 18)}}的其他基金

Collaborative Research: Advanced Oxidation Processes for the Control of Iodinated Disinfection Byproducts in Drinking Water
合作研究:控制饮用水中碘消毒副产物的高级氧化工艺
  • 批准号:
    2308711
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Probing Contrast Mechanisms of Super-resolution Atomic Force Microscopy for Imaging Multifunctional Self-assembled Monolayers
超分辨率原子力显微镜成像多功能自组装单层膜的对比机制探索
  • 批准号:
    1808213
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Directing and Probing DNA Origami Self-Assembly on Dynamic Surfaces
指导和探测动态表面上的 DNA 折纸自组装
  • 批准号:
    1410199
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Dynamic Surface Interactions for Single Molecule Imaging of Biochemical Reactions
EAGER:生化反应单分子成像的动态表面相互作用
  • 批准号:
    1361066
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
  • 批准号:
    2045550
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
New ligand design and coordination chemistry directed towards asymmetrical hydrogenation of unsaturated substrates
针对不饱和底物不对称氢化的新配体设计和配位化学
  • 批准号:
    362454-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New ligand design and coordination chemistry directed towards asymmetrical hydrogenation of unsaturated substrates
针对不饱和底物不对称氢化的新配体设计和配位化学
  • 批准号:
    362454-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Design and evaluation of olefin hydrogenation catalysts
烯烃加氢催化剂的设计与评价
  • 批准号:
    384232-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
New ligand design and coordination chemistry directed towards asymmetrical hydrogenation of unsaturated substrates
针对不饱和底物不对称氢化的新配体设计和配位化学
  • 批准号:
    362454-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Toward Direct Design of Transfer Hydrogenation Catalysts
转向氢化催化剂的直接设计
  • 批准号:
    7131838
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
DESIGN AND USE OF ASYMMETRIC HYDROGENATION CATALYSTS
不对称加氢催化剂的设计与应用
  • 批准号:
    2189803
  • 财政年份:
    1995
  • 资助金额:
    $ 50万
  • 项目类别:
DESIGN AND USE OF ASYMMETRIC HYDROGENATION CATALYSTS
不对称加氢催化剂的设计与应用
  • 批准号:
    2189804
  • 财政年份:
    1995
  • 资助金额:
    $ 50万
  • 项目类别:
Design of Heterogeneous Catalysts for Selective Asymmetric Hydrogenation
选择性不对称加氢多相催化剂的设计
  • 批准号:
    07650944
  • 财政年份:
    1995
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward Direct Design of Transfer Hydrogenation Catalysts
转向氢化催化剂的直接设计
  • 批准号:
    7648138
  • 财政年份:
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了