ASCENT: Reducing greenhouse emissions with ultra-efficient High-Voltage Monolithic Bidirectional Transistors
ASCENT:利用超高效高压单片双向晶体管减少温室气体排放
基本信息
- 批准号:2328137
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2027-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Greenhouse gas emissions are the primary contributors for the change in global climate dynamics. According to the U.S. Environment and Protection Agency, 50% of the total greenhouse gas emissions sources are tied to electricity generation (25%) and transportation (27%), respectively. This places an urgent need for efficient utilization of available electric power, considering 80% of the total generated electric power is expected to flow through power electronics by 2030. With the rising electrification of the modern grid and transportation, ultra-efficient bidirectional power flow is fast becoming an emerging requirement. Bidirectional power flow can be witnessed in a grid (for example, solar energy from consumer to grid and from grid to consumer, consumer as storage and distribution element), electric car (for example, from car to grid and grid to car, car to another car, car as a source and consumer of electric power), industrial motor drives, solid-state transformers, data center power supplies, elevator drives, DC microgrids, energy storage, etc. All these applications drive the rapid expansion of power electronics across all forms of electrical power consumption and production; thus, it is critical that their construction is sustainable, compact, and they operate efficiently. However, incumbent circuit solutions as well as semiconductor devices that support bidirectional power flow result in large footprint, reduced efficiency, and low fault tolerance. This NSF proposal aims to take a materials, devices, and circuit co-design approach to tackle both semiconductor device and circuit challenges simultaneously. We propose to utilize circuit architectures such as matrix converters (MCs) and current source inverters (CSIs) with suitably designed semiconductor transistors, i.e., bidirectional transistors, to present a cohesive solution. Bidirectional transistors have the capability to block voltage and conduct current in both directions. Through our multi-abstraction level collaborative research, novel material and bidirectional device synthesis and fabrication steps will be developed, device and circuit level understanding of bidirectional transistor operation will be gained and the performance of these devices in MC and CSI inverter topologies will be demonstrated and benchmarked. This research effort will be complemented with efforts for education and workforce development activities as well as broadening participation amongst K-12, pre-college, and college students.The key objective of this proposal is to leverage wide bandgap materials (WBG) and ultra-wide-bandgap (UWBG) materials to develop ultra-efficient, high-voltage monolithic bidirectional transistor (MBDT) to be utilized in efficient bidirectional power flow enabling circuits. This project will focus on these research goals. 1) Demonstration of the first UWBG based monolithic bidirectional transistors (MBDT). 2) Enhancing the performance of GaN Monolithic Bidirectional Transistor and manufacturability simultaneously by material-device co-design. 3) Development of a unique high-conductivity multi-channel UWBG (AlGaN) material development which can lead to 10x conduction losses compared to incumbent solutions. 4) Develop comprehensive understanding of physical phenomenon electron-trapping, hysteresis, breakdown mechanisms, current collapse, thermal limits, robustness, and reliability in monolithic bidirectional transistors. 5) Demonstration of converter topologies and benchmarking efficiency with the introduction of monolithic bidirectional transistors compared to incumbent solutions. Our workforce education, training, and development efforts will include fostering student-industry collaboration by facilitating internship opportunities, lunch seminar networking, and curriculum redesign. Additionally, we will work with industry and local Madison area technical colleges to design courses to meet rising technician and operator needs. We will broaden participation by performing outreach activities with under-represented and underprivileged pre-college students and increase awareness at the K-12 level on smart energy choice and their impact on the environment with a new activity at the Wisconsin Science Festival and Engineering Expo.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
温室气体排放是全球气候动态变化的主要原因。根据美国环境保护署(U.S. environmental and Protection Agency)的数据,温室气体排放总量的50%分别与发电(25%)和运输(27%)有关。考虑到到2030年,预计80%的总发电量将通过电力电子设备输送,这就迫切需要有效利用现有的电力。随着现代电网和交通的电气化程度不断提高,超高效的双向潮流正迅速成为一种新兴的需求。电网(例如,太阳能从消费者到电网,从电网到消费者,消费者作为存储和分配元件)、电动汽车(例如,从汽车到电网,电网到汽车,汽车到另一辆汽车,汽车既是电力的来源又是电力的消费者)、工业电机驱动、固态变压器、数据中心电源、电梯驱动、直流微电网、储能等,都可以看到双向的电力流动。所有这些应用都推动了电力电子在所有形式的电力消费和生产中的快速扩展;因此,至关重要的是,它们的结构是可持续的,紧凑的,并有效地运作。然而,现有的电路解决方案以及支持双向功率流的半导体器件导致占地面积大,效率降低,容错性低。NSF的提案旨在采用材料、器件和电路协同设计的方法,同时解决半导体器件和电路的挑战。我们建议利用电路架构,如矩阵变换器(MCs)和电流源逆变器(csi)与适当设计的半导体晶体管,即双向晶体管,以提供一个内聚的解决方案。双向晶体管具有在两个方向上阻挡电压和传导电流的能力。通过我们的多抽象级合作研究,将开发新型材料和双向器件的合成和制造步骤,将获得对双向晶体管工作的器件和电路级理解,并将展示和基准测试这些器件在MC和CSI逆变器拓扑中的性能。这项研究工作将与教育和劳动力发展活动的努力相辅相成,并扩大K-12、大学预科和大学生的参与。本提案的主要目标是利用宽带隙材料(WBG)和超宽带隙(UWBG)材料来开发超高效,高压单片双向晶体管(MBDT),用于高效的双向功率流使能电路。本项目将专注于这些研究目标。1)第一个基于UWBG的单片双向晶体管(MBDT)的演示。2)通过材料器件协同设计,同时提高GaN单片双向晶体管的性能和可制造性。3)开发独特的高导电性多通道UWBG (AlGaN)材料,与现有解决方案相比,该材料可导致10倍的导电性损失。4)全面理解单片双向晶体管的物理现象——电子捕获、迟滞、击穿机制、电流崩溃、热极限、稳健性和可靠性。5)与现有解决方案相比,通过引入单片双向晶体管演示转换器拓扑和基准效率。我们的劳动力教育、培训和发展工作将包括通过促进实习机会、午餐研讨会网络和课程重新设计来促进学生与行业的合作。此外,我们将与工业界和当地麦迪逊地区的技术学院合作,设计课程,以满足不断增长的技术人员和操作员的需求。我们将在威斯康星科学节和工程博览会上开展一项新活动,提高K-12阶段学生对智能能源选择及其对环境影响的认识,从而扩大参与范围。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chirag Gupta其他文献
Modern Machine and Deep Learning Systems as a way to achieve Man-Computer Symbiosis
- DOI:
- 发表时间:
2021-01 - 期刊:
- 影响因子:0
- 作者:
Chirag Gupta - 通讯作者:
Chirag Gupta
Infant Weeping Calls Decoder using Statistical Feature Extraction and Gaussian Mixture Models
使用统计特征提取和高斯混合模型的婴儿哭声解码器
- DOI:
10.1109/icccnt45670.2019.8944527 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kushal Sharma;Chirag Gupta;S. Gupta - 通讯作者:
S. Gupta
Refueling analysis of Type IV composite tank as per SAEJ2601 with refueling station configuration
- DOI:
10.1016/j.ijhydene.2024.06.300 - 发表时间:
2024-08-12 - 期刊:
- 影响因子:
- 作者:
Chirag Gupta;Shailesh Kumar;Saurav Poonia;Kapil Pareek - 通讯作者:
Kapil Pareek
Understanding of multiway heat extraction using peripheral diamond in an AlGaN/GaN high electron mobility transistor by electrothermal simulations
通过电热模拟了解 AlGaN/GaN 高电子迁移率晶体管中使用外围金刚石的多路热提取
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Khush Gohel;Linhui Zhou;S. Mukhopadhyay;S. Pasayat;Chirag Gupta - 通讯作者:
Chirag Gupta
Transcriptome-based Gene Networks for Systems-level Analysis of Plant Gene Functions
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chirag Gupta - 通讯作者:
Chirag Gupta
Chirag Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Reducing direct greenhouse gas emissions from urban wastewater systems
减少城市废水系统的直接温室气体排放
- 批准号:
LP220100357 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Linkage Projects
Harnessing active N2O-reducing polyphosphate-accumulating bacteria for developing innovative biotechnology toward low greenhouse gas emissions and phosphorus recovery
利用活性 N2O 还原聚磷酸盐积累细菌开发创新生物技术,实现低温室气体排放和磷回收
- 批准号:
23H03565 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EPSRC-SFI: REducing Greenhouse gas emissions and ENgaging antibactErial Resistance in Anaerobic Treated Effluents (REGENERATE)
EPSRC-SFI:减少温室气体排放并提高厌氧处理废水的抗菌性(再生)
- 批准号:
EP/X010260/1 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Research Grant
Cement kiln dust (CKD) and digestate for improving soil quality and crop yield and reducing greenhouse gas emissions
水泥窑粉尘 (CKD) 和消化物可改善土壤质量和作物产量并减少温室气体排放
- 批准号:
577602-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Alliance Grants
Low Cost and High-Performance Sodium-ion Batteries for Grid Energy Storage toward Reducing Greenhouse Gas Emission
低成本高性能钠离子电池用于电网储能以减少温室气体排放
- 批准号:
576927-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Alliance Grants
A roadmap for reducing the greenhouse gas footprint of Ontario grain production
减少安大略省粮食生产温室气体足迹的路线图
- 批准号:
566172-2021 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Alliance Grants
Sustainable Aviation for Reducing Anthropogenic Greenhouse Gas Emission in Canadian Skies
减少加拿大天空人为温室气体排放的可持续航空
- 批准号:
577208-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Alliance Grants
Reducing greenhouse gas emissions from Australian farm dams
减少澳大利亚农场水坝的温室气体排放
- 批准号:
DE220100752 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Discovery Early Career Researcher Award
A roadmap for reducing the greenhouse gas footprint of Ontario grain production
减少安大略省粮食生产温室气体足迹的路线图
- 批准号:
566172-2021 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Alliance Grants
Reducing work to reduce greenhouse gas emissions: UK employees' preferences for working-time reduction and the factors affecting them
减少工作以减少温室气体排放:英国员工对减少工作时间的偏好及其影响因素
- 批准号:
2606207 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Studentship