ExpandQISE: Track 1: Understanding and controlling decoherence in hybrid spin qubit-magnon systems for advancing education and building workforce in emerging quantum technologies

ExpandQISE:轨道 1:理解和控制混合自旋量子位-磁振子系统中的退相干,以推进新兴量子技术的教育和培养劳动力

基本信息

  • 批准号:
    2328822
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract: Quantum technologies are expected to become integral to the future sustained economic well-being of the country. Quantum computing and quantum sensing are essential parts of evolving quantum technologies. While many quantum technologies, such as quantum computers based on superconducting qubits, are already available to do advanced calculations, the need for ultra-low ( 0.1K) temperatures makes them challenging and less accessible. The team focuses on studying and controlling the quantum decoherence in hybrid diamond spin qubit-magnetic excitation (magnon) systems that could potentially serve as scalable quantum information processing platforms operating at higher temperatures (≥ 1 K) than superconducting qubits. The project's goals are to design, fabricate, characterize, and model hybrid architectures where diamond spin qubits and their interactions are controlled by magnons and spin current effects using heterostructures of thin-film or two-dimensional magnetic materials. The principal investigators at Wichita State University benefit from extending the capabilities in advanced nanofabrication of quantum materials and cryogenic quantum sensing from the University of Nebraska-Lincoln. The project also aims to advance education and build a workforce in emerging quantum technologies by training a postdoc, several graduate/undergraduate/K-12 (abbreviating Kindergarten through 12th grade) students, and four K-12 teachers.Technical Abstract: The realization of chip-integrated, spin-based quantum information processing (QIP) devices depends on the ability to controllably link distant spin qubits via a coherent quantum bus. To achieve direct spin-spin qubits coupling, architectures based on linear chains of spin defects positioned on the surface of wide-bandgap semiconductors have been proposed, but the short range (~ 10 nm) of the dipolar interaction between neighbors and disorder in their relative positions impose engineering challenges that are currently difficult to overcome. The goals of the project are to design, fabricate, characterize, and model hybrid architectures where diamond nitrogen-vacancy (NV) spin qubits (SQs) and their interactions are controlled by magnonics and spintronics effects using heterostructures of thin-film and two-dimensional (2D) magnetic materials. The project seeks to study SQ-magnon couplings in magnetic nanowires, 2D flakes, and cavities with different shapes and compositions and at a wide range of temperatures (0.3-350 K) and magnetic fields (up to 3 T) with the goal to identify the physical mechanisms of the rich magnetic excitation modes in magnetic materials at the nanoscale, the origin of decoherence in hybrid diamond SQ-magnon systems, and the optimal working parameters for using (classical and quantum) magnons to couple distant SQs without affecting their coherence. The proposed research activities include: (i) growth of magnetic materials (thin film, 2D) and nanofabrication of spintronic devices for generating and controlling magnons, (ii) perform static and dynamic magnetic, optical, and magneto-transport measurements, (iii) perform quantum sensing of magnons in thin-film and 2D magnets at ambient and cryogenic conditions to study the rich physics of spin excitations and explore quantum magnons, (iv) and finally establish theoretically and experimentally the strong coherent coupling between NV SQs and magnons relevant to QIP. The principal investigator at University of Nebraska Lincoln (UNL) helps the principal investigators at Wichita State University to extend UNL's quantum capabilities in advanced nanofabrication of quantum materials (diamond membranes doped with NVs, magnetic waveguides/devices) and cryogenic quantum sensing. The workforce development goal of this project is to train and mentor students in quantum information science (QIS) and technologies. As a new field with distinct knowledge and skills required to be competitive in the emerging quantum workforce, an opportunity exists to design innovative curricula for training graduate and undergraduate students and to create new education and outreach activities that integrate quantum concepts to recruit first-generation quantum scientists and engineers. The workforce development plans include: (1) design an applied learning module for quantum technologies course, (2) design traditional and animation-based course modules for emerging QIS technologies, (3) education, training, and mentoring Plans for K-12 Teachers and K-12 Students, and (4) promote inclusive and equitable research plan.This project is jointly funded by The Office of Multidisciplinary Activities (MPS/OMA), the Established Program to Stimulate Competitive Research (EPSCoR), and Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:量子技术预计将成为该国未来持续经济福祉的组成部分。量子计算和量子传感是不断发展的量子技术的重要组成部分。虽然许多量子技术,如基于超导量子比特的量子计算机,已经可以进行高级计算,但对超低(0.1K)温度的需求使它们具有挑战性,并且不易获得。该团队专注于研究和控制混合金刚石自旋量子比特-磁激发(磁振子)系统中的量子退相干,该系统可能作为可扩展的量子信息处理平台,在比超导量子比特更高的温度(≥ 1 K)下运行。该项目的目标是设计,制造,表征和建模混合架构,其中金刚石自旋量子比特及其相互作用由磁振子和自旋电流效应控制,使用薄膜或二维磁性材料的异质结构。威奇托州立大学的主要研究人员受益于内布拉斯加大学林肯分校在先进的量子材料纳米纤维和低温量子传感方面的能力。该项目还旨在通过培训一名博士后,几名研究生/本科生/K-12(从幼儿园到12年级)学生和四名K-12教师来促进教育和建立新兴量子技术的劳动力。技术摘要:芯片集成的基于自旋的量子信息处理(QIP)设备的实现取决于通过相干量子总线可控地连接远程自旋量子比特的能力。为了实现直接的自旋-自旋量子位耦合,已经提出了基于位于宽带隙半导体表面上的自旋缺陷的线性链的架构,但是邻居之间的偶极相互作用的短范围(~ 10 nm)和它们的相对位置中的无序施加了目前难以克服的工程挑战。该项目的目标是设计,制造,表征和建模混合架构,其中金刚石氮空位(NV)自旋量子位(SQ)及其相互作用由磁振子和自旋电子学效应控制,使用薄膜和二维(2D)磁性材料的异质结构。该项目旨在研究磁性纳米线,2D薄片和具有不同形状和成分的空腔中的SQ-磁振子耦合,并在广泛的温度范围内(0.3-350 K)和磁场(高达3 T),目标是确定纳米级磁性材料中丰富的磁激发模式的物理机制,混合金刚石SQ-磁振子系统中退相干的起源,以及使用(经典和量子)磁振子耦合远距离SQs而不影响其相干性的最佳工作参数。拟议的研究活动包括:(一)磁性材料的生长(ii)执行静态和动态磁性、光学和磁输运测量,(iii)在环境和低温条件下执行薄膜和2D磁体中的磁振子的量子感测,以研究自旋激发的丰富物理学并探索量子磁振子,(iv)从理论和实验上证实了与QIP有关的NV SQs和磁振子之间的强相干耦合。内布拉斯加大学林肯分校(UNL)的首席研究员帮助威奇托州立大学的首席研究员扩展UNL在量子材料(掺杂纳米粒子的金刚石膜、磁波导/器件)和低温量子传感的先进纳米纤维方面的量子能力。该项目的劳动力发展目标是在量子信息科学(QIS)和技术方面培训和指导学生。作为一个具有独特知识和技能的新领域,需要在新兴的量子劳动力中具有竞争力,因此有机会设计创新的课程来培训研究生和本科生,并创建新的教育和推广活动,将量子概念融入其中,以招募第一代量子科学家和工程师。劳动力发展计划包括:(1)为量子技术课程设计应用学习模块,(2)为新兴的QIS技术设计传统和基于动画的课程模块,(3)为K-12教师和K-12学生制定教育,培训和指导计划,以及(4)促进包容性和公平的研究计划。该项目由多学科活动办公室(MPS/OMA)联合资助,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kapildeb Ambal其他文献

Kapildeb Ambal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kapildeb Ambal', 18)}}的其他基金

RII Track 4: Metrology and spectroscopy of individual nanomagnets dynamics using quantum sensor-based (NV- center) nano-magnetometry
RII 轨道 4:使用基于量子传感器(NV 中心)纳米磁力测量的单个纳米磁体动力学的计量学和光谱学
  • 批准号:
    2033210
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Global Centers Track 1: Understanding Climate Change Impacts on Transboundary Waters
全球中心轨道 1:了解气候变化对跨界水域的影响
  • 批准号:
    2330317
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AGS-FIRP Track 2: Understanding Vertical Variation of Energy Dissipation near the Surface for Solving the Mystery of the Observed Surface Energy Imbalance
AGS-FIRP 轨道 2:了解地表附近能量耗散的垂直变化,以解决观测到的地表能量不平衡之谜
  • 批准号:
    2231229
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
IRES Track I: Understanding Climate, Renewable Energy, and Oceanic Condition Effects on Intercontinental Connections of Birds of Prey
IRES 第一轨:了解气候、可再生能源和海洋条件对猛禽洲际联系的影响
  • 批准号:
    2246324
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
IRES TRACK 1: US-Ghana Student Research Experience: Understanding and conceptualizing threats and solutions of onsite sanitation and sea level rise on coastal groundwater resources
IRES 轨道 1:美国-加纳学生研究经验:了解和概念化现场卫生和海平面上升对沿海地下水资源的威胁和解决方案
  • 批准号:
    2246330
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Understanding Wildfire Risks to Drinking Water Source Waters: Pyrogenic Changes to Organic Matter and Disinfection By-product Formation
RII Track-4:NSF:了解饮用水源水域的野火风险:有机物的热原变化和消毒副产品的形成
  • 批准号:
    2229313
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Understanding the Nanoscale Incommensurate Modulated Structure in the Titanium Alloys
RII Track-4:NSF:了解钛合金中的纳米级不相称调制结构
  • 批准号:
    2229724
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Post-hurricane recovery of island freshwater lenses: Understanding the impact of social and hydrological dynamics
合作研究:IRES 第一轨:飓风后岛屿淡水透镜体的恢复:了解社会和水文动态的影响
  • 批准号:
    2246400
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Post-hurricane recovery of island freshwater lenses: Understanding the impact of social and hydrological dynamics
合作研究:IRES 第一轨:飓风后岛屿淡水透镜体的恢复:了解社会和水文动态的影响
  • 批准号:
    2246402
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了