EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning

EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究

基本信息

  • 批准号:
    2329919
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The COVID-19 pandemic may be over, but transitions in course delivery format—going remote, or hybrid—are still being used and universities appreciate their potential to attract more diverse groups of students than purely on-campus classes. This flexible education format in platforms like Zoom is here to stay. To deliver better learning experiences, educators need to gauge students' engagement in courses. But, while lecturing, it is challenging to assess engagement online. Machine learning technology can help educators during lectures so that the classroom engagement dynamics can be estimated, and proper interventions can be taken in real time. However, data-driven machine learning (ML) technology puts its users at risk of privacy loss, even with distributed machine learning programs hosted in individual students’ personal workstations that learn patterns of their users and report the patterns back to a global learner that merges the resulting findings into a global ML model. Although no private data is leaving local workstations, the individual patterns distributed across the network can leak private data. This project will build innovative privacy-aware student-engagement detection technology. The main novelty of this project will be in its capacity to learn in real-time from various types of student engagement data without directly accessing it. In platformized online education, the project will add privacy guarantee to users, while underrepresented STEM students can safely interact with educators and peers to facilitate the community of inquiry model of learning.The project aims to design a distributed machine learning paradigm that introduces three hierarchical categories of learner nodes that will be facilitated by a novel neural network architecture agnostic gradient sharing algorithm that will make any coordinated attempt to reconstruct original data from the partial gradients shared between nodes provably intractable. The hierarchical organization of the framework makes it effective at providing a level of obfuscation in partial gradients coming from partially observable model architecture. The research methodology will be motivated by concepts of differential privacy in gradient sharing algorithms. The project will introduce new concepts regarding how to select the gradient components to distribute and to optimize learnable parameters without incurring any additional computational overhead in building a global model, compared to the state-of-the-art gradient-based defense algorithms. The project will be driven by two research thrusts: (1) design of a provable privacy-aware distributed machine learning framework, (2) leveraging the novel framework in estimating student engagement in platformized online STEM education at University of Colorado Denver. The research effort will solve an open problem in the distributed machine learning from a black-box perspective where both full gradients and model architecture are unknown. Therefore, it has potential to be adopted in other areas where privacy aware ML is a requirement. The project outcomes will provide immediate benefits to 1) undergraduate STEM students while improving student retention and overall learning experiences, 2) online STEM instructors who will be able to gauge student engagement in real-time with an equitable, privacy-aware and inclusive learning environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19大流行可能已经结束,但课程交付形式的转变-远程或混合-仍在使用,大学欣赏其吸引更多学生群体的潜力,而不是纯粹的校园课程。像Zoom这样的平台上的这种灵活的教育形式将继续存在。为了提供更好的学习体验,教育工作者需要衡量学生对课程的参与度。但是,在讲课时,在线评估参与度是一项挑战。机器学习技术可以在讲座期间帮助教育工作者,以便可以估计课堂参与动态,并可以真实的时间采取适当的干预措施。然而,数据驱动的机器学习(ML)技术使其用户面临隐私丢失的风险,即使是在个别学生的个人工作站中托管的分布式机器学习程序,这些程序学习用户的模式并将模式报告给全局学习者,将结果合并到全局ML模型中。虽然没有私有数据离开本地工作站,但分布在网络上的各个模式可能会泄漏私有数据。该项目将建立创新的隐私意识学生参与检测技术。该项目的主要新奇之处在于,它能够从各种类型的学生参与数据中实时学习,而无需直接访问这些数据。在平台化的在线教育中,该项目将为用户增加隐私保障,而代表性不足的STEM学生可以安全地与教育工作者和同龄人互动,以促进学习的探究模型社区。该项目旨在设计一个分布式机器学习范式,介绍了学习节点的三个层次类别,这将通过一种新的神经网络架构不可知的梯度共享算法来促进,该算法将使任何协调的尝试从节点之间共享的部分梯度重建原始数据可证明是棘手的。 该框架的分层组织使其能够有效地在来自部分可观察模型架构的部分梯度中提供一定程度的混淆。研究方法的动机是梯度共享算法中的差分隐私概念。该项目将引入新的概念,与最先进的基于梯度的防御算法相比,如何选择要分布的梯度分量并优化可学习的参数,而不会在构建全局模型时产生任何额外的计算开销。该项目将由两个研究方向驱动:(1)设计一个可证明的隐私感知分布式机器学习框架,(2)利用新的框架来评估科罗拉多丹佛大学平台化在线STEM教育的学生参与度。研究工作将从黑盒的角度解决分布式机器学习中的一个开放问题,其中完整的梯度和模型架构都是未知的。因此,它有可能被其他需要隐私感知ML的领域采用。该项目的成果将为1)本科STEM学生提供直接的好处,同时提高学生的保留率和整体学习体验,2)在线STEM教师将能够以公平的方式实时衡量学生的参与度,隐私权-该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashis Kumer Biswas其他文献

A Fast FPGA-Based BCD Adder
  • DOI:
    10.1007/s00034-018-0770-3
  • 发表时间:
    2018-02-20
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Mubin Ul Haque;Zarrin Tasnim Sworna;Hafiz Md. Hasan Babu;Ashis Kumer Biswas
  • 通讯作者:
    Ashis Kumer Biswas

Ashis Kumer Biswas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
  • 批准号:
    31771933
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
  • 批准号:
    2315247
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Cooperative Agreement
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Building Synthetic Biofilm Consortia for Polyfluorinated Chemicals Biodegradation
建立多氟化学品生物降解合成生物膜联盟
  • 批准号:
    2343831
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
  • 批准号:
    2344553
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Cooperative Agreement
Building Credentialed Media Technology Pathways for Priority Populations from High School through Community Colleges to Industry (MTP3)
为从高中到社区大学再到工业界的优先人群建立认证媒体技术途径 (MTP3)
  • 批准号:
    2400610
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference: CRA-E Workshop: Supporting career building, student research experiences, and advancement of teaching track faculty
会议:CRA-E 研讨会:支持职业建设、学生研究经验和教学轨道教师的进步
  • 批准号:
    2421010
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Building Wildland Fire Science Capacity in Alaska Through The University of Alaska Fairbanks Rural Campuses
规划:FIRE-PLAN:通过阿拉斯加大学费尔班克斯乡村校区建设阿拉斯加荒地火灾科学能力
  • 批准号:
    2333423
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了