MFB: Better Homologous Folding using Computational Linguistics and Deep Learning

MFB:使用计算语言学和深度学习更好的同源折叠

基本信息

  • 批准号:
    2330737
  • 负责人:
  • 金额:
    $ 145.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Ribonucleic acid (RNA) is of utmost importance in our daily life because it plays essential roles in every living cell. Furthermore, our world was recently turned upside down by an RNA virus, which was then partially contained by an RNA vaccine. Contrary to common wisdom, RNA is not just an intermediate “messenger” between the more well-known DNA and protein, but it can also have profound biological functions such as controlling gene expression. These functions are determined by RNA structures (the “shapes” of the RNAs), and therefore accurate modeling of these structures is critical for understanding RNA functions and for designing vaccines, test kits, and drugs. However, existing experimental methods for determining RNA structure are extremely expensive and often limited to short sequences, and existing computational tools are rather slow and not completely accurate. This slowness hinders their applications to full-length viral genomes such as coronavirus (about 30,000 nucleotides or “letters”). Therefore, there is a critical need to develop better computational methods to predict RNA structures that are more accurate and more efficient and scalable to longer sequences such as whole genomes. Advances in this direction could improve our understanding of RNA viruses (which include common cold, influenza, Rabies, HIV, Ebola, polio, measles, and more) and increase our readiness to fight the next pandemic.This project develops efficient algorithms for predicting the structures of multiple related (“homologous”) RNA sequences such as SARS-CoV-2 variants. These algorithms will scale linearly in both the average sequence length and the number of sequences. This linear scaling will enable whole genome applications. The researchers aim to achieve these goals with ideas from two branches of artificial intelligence (AI): natural language processing and deep learning. Specifically, this project will improve three types of homologous folding algorithms and adapt them to structure discovery: (1) align-then-fold: first align the homologous sequences and then predict the consensus structure for the aligned sequences; (2) iteratively align-and-fold: iterate between sequence alignment and structure prediction; and (3) simultaneous align-and-fold: jointly predict alignment and structures. The team will adapt these fast methods to discover conserved structures using global structure prediction for RNA viral genomes and transcripts. This research will make it possible to discover new RNA structures and functions, and will help the design of vaccines, test kits, and drugs.This project is supported by the Divisions of Information and Intelligent Systems and of Chemistry and the Chemical Theory, Models, and Computational Methods Program in the Division of Chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
核糖核酸(RNA)在我们的日常生活中至关重要,因为它在每个活细胞中起着至关重要的作用。此外,我们的世界最近被一种RNA病毒弄得天翻地覆,这种病毒后来被RNA疫苗部分遏制。与常识相反,RNA不仅仅是更知名的DNA和蛋白质之间的中间“信使”,而且它还可以具有深刻的生物功能,例如控制基因表达。这些功能是由RNA结构(RNA的“形状”)决定的,因此这些结构的准确建模对于理解RNA功能和设计疫苗,测试试剂盒和药物至关重要。然而,现有的用于确定RNA结构的实验方法极其昂贵,并且通常限于短序列,并且现有的计算工具相当慢并且不完全准确。这种缓慢阻碍了它们在全长病毒基因组(如冠状病毒(约30,000个核苷酸或“字母”))中的应用。因此,迫切需要开发更好的计算方法来预测RNA结构,这些方法更准确,更有效,并且可扩展到更长的序列,如整个基因组。这一方向的进展可以提高我们对RNA病毒(包括普通感冒、流感、狂犬病、HIV、埃博拉病毒、脊髓灰质炎、麻疹等)的理解,并提高我们对抗下一次大流行的准备。该项目开发了有效的算法,用于预测多个相关(“同源”)RNA序列的结构,如SARS-CoV-2变体。这些算法将在平均序列长度和序列数量上线性缩放。这种线性缩放将使全基因组应用成为可能。研究人员的目标是通过人工智能(AI)的两个分支实现这些目标:自然语言处理和深度学习。具体而言,本项目将改进三种类型的同源折叠算法并使其适用于结构发现:(1)重复折叠:首先比对同源序列,然后预测比对序列的共有结构;(2)迭代折叠:在序列比对和结构预测之间进行重复;(3)同时折叠:联合预测比对和结构。该团队将采用这些快速方法,利用RNA病毒基因组和转录物的全局结构预测来发现保守结构。这项研究将使发现新的RNA结构和功能成为可能,并将有助于疫苗,测试试剂盒和药物的设计。该项目由信息和智能系统部门以及化学和化学理论,模型,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Huang其他文献

Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards
具有经典可积台球形状的石墨烯台球中的高斯正交系综统计
Safety evaluation method of tubing strings in high-pressure, high-temperature and high-yield gas wells based on FIV analysis
基于FIV分析的高压高温高产气井管柱安全评价方法
  • DOI:
    10.1016/j.engfailanal.2020.105044
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Xiaoqiang Guo;Jun Liu;Liming Dai;Liang Huang;Anchao Wei;Dake Fang;Linlin Zeng
  • 通讯作者:
    Linlin Zeng
Inhomogeneous deformation behaviors of oblique hole-flanging parts during electromagnetic forming
斜孔翻边件电磁成形过程中的不均匀变形行为
  • DOI:
    10.1016/j.jmapro.2019.12.047
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Hongliang Su;Liang Huang;Jianjun Li;Fei Ma;Huijuan Ma;Pan Huang;Hui Zhu;Fei Feng
  • 通讯作者:
    Fei Feng
Semantic model of ship behaviour based on ontology engineering
基于本体工程的船舶行为语义模型
  • DOI:
    10.1049/joe.2018.8329
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yimeng Zhang;Yuanqiao Wen;Fan Zhang;Chunhui Zhou;Lei Du;Liang Huang;Changshi Xiao
  • 通讯作者:
    Changshi Xiao
A Review of the Application of Steel Slag in CO2 Fixation
钢渣固定CO2的应用综述
  • DOI:
    10.1002/cben.202000021
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Junya Wang;Mi Zhong;Pengfei Wu;Shikun Wen;Liang Huang;Ping Ning
  • 通讯作者:
    Ping Ning

Liang Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Huang', 18)}}的其他基金

RI: Small: Low-Latency and High-Quality Simultaneous Translation
RI:小:低延迟、高质量同声翻译
  • 批准号:
    2009071
  • 财政年份:
    2020
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
RI: Small: Fast and Accurate Natural Language Parsing and Generation by Marrying Deep Learning with Dynamic Programming
RI:小型:将深度学习与动态规划相结合,快速准确地进行自然语言解析和生成
  • 批准号:
    1817231
  • 财政年份:
    2018
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Scaling Up Discriminative Learning for Natural Language Understanding and Translation
EAGER:协作研究:扩大自然语言理解和翻译的判别学习
  • 批准号:
    1656051
  • 财政年份:
    2015
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Scaling Up Discriminative Learning for Natural Language Understanding and Translation
EAGER:协作研究:扩大自然语言理解和翻译的判别学习
  • 批准号:
    1449278
  • 财政年份:
    2014
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
SBIR Phase II: Amphiphilic Copolymers as Thickening Agents for Personal Care Products
SBIR 第二阶段:作为个人护理产品增稠剂的两亲性共聚物
  • 批准号:
    1430647
  • 财政年份:
    2014
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
SBIR Phase I: Amphiphilic Copolymers as Thickening Agents for Personal Care Products
SBIR 第一阶段:作为个人护理产品增稠剂的两亲性共聚物
  • 批准号:
    1248253
  • 财政年份:
    2013
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Studentship
Creating Better Opportunities in the South West Through a Growth-Mindset-of-Opportunity Intervention
通过机会增长心态干预在西南地区创造更好的机会
  • 批准号:
    ES/Z502480/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Research Grant
Decision 360: Open Finance for better lending decisions
决策 360:开放金融以做出更好的贷款决策
  • 批准号:
    10099934
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Collaborative R&D
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Investment Accelerator
Healthy Jozi: A Staged Approach to Better Workplace Food Choices and Chronic Disease Screening and Linkage to Care
健康 Jozi:更好的工作场所食物选择和慢性病筛查以及与护理联系的分阶段方法
  • 批准号:
    MR/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Research Grant
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
  • 批准号:
    2340728
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Thinking ahead to do better now: Legacy-focused cognition and its link to environmental sustainability
博士论文研究:提前思考现在做得更好:以遗产为中心的认知及其与环境可持续性的联系
  • 批准号:
    2343645
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
New Users for a Better ICOS
新用户打造更好的 ICOS
  • 批准号:
    10101542
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    EU-Funded
Shaping The Nucleus, For Better Or Worse
塑造核心,无论好坏
  • 批准号:
    BB/Y004205/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了