Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
基本信息
- 批准号:2331294
- 负责人:
- 金额:$ 37.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The human brain exhibits complex mechanical behavior. Its deformation under external forces depends on the extent and speed of loading. Rapid deformation of the brain during events such as blasts and automotive crashes can cause traumatic brain injury. Understanding the mechanical behavior of the human brain under such extreme conditions is critical to developing computer models for predicting brain injury. This knowledge is also needed to design safer personal protective equipment and brain injury management and prevention strategies. Unfortunately, the current understanding of the mechanical behavior of living humans' brains is restricted to small deformations and a narrow range of loading rates that do not represent the full spectrum of injury-causing conditions. This award supports fundamental research combining high-rate mechanical testing, analytical and computational modeling, and machine learning to generate insights into how the living human brain responds to large and rapid loading. Results from this research will positively impact U.S. national health and welfare and will contribute to the fields of tissue mechanics, traumatic brain injury, and machine learning. This project will lead to new courses and involve contributions from underrepresented minorities.The overarching goal of this research is to understand the high strain rate mechanics of the brain in its native biophysical environment. The first stage will focus on tissue responses under small deformations and dynamic strain rates. Wide-band Magnetic Resonance Elastography experiments will be conducted on brain tissue specimens from multiple brain regions to develop linear viscoelastic constitutive models. Multi-fidelity models will be developed to fuse the observed responses with available narrow-band in vivo brain tissue responses for predicting linear viscoelastic properties of the in vivo brain tissue in a wide range of loading frequencies. The second stage will focus on tissue responses under large deformations and extreme strain rates. Quasi-static and dynamic mechanical testing will be conducted to develop visco-hyperelastic constitutive models. Physics-informed multi-fidelity models will be developed to fuse the ex vivo visco-hyperelastic responses with the in vivo linear viscoelastic responses characterized in the previous stage. This study will significantly advance our understanding of brain biomechanics by generating insights into the relationship between in vivo and ex vivo tissue mechanics and the first-ever full-field maps of the living brain’s mechanical properties applicable under extreme loading conditions.This project is jointly funded by the Biomechanics and Mechanobiology (BMMB) program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类大脑表现出复杂的机械行为。它在外力作用下的变形取决于加载的程度和速度。在爆炸和汽车碰撞等事件中,大脑的快速变形可能导致创伤性脑损伤。了解人类大脑在这种极端条件下的机械行为对于开发预测脑损伤的计算机模型至关重要。设计更安全的个人防护设备和脑损伤管理和预防策略也需要这些知识。不幸的是,目前对活体人类大脑机械行为的理解仅限于小变形和窄范围的加载速率,这并不代表造成伤害的全部条件。该奖项支持基础研究,结合高速率机械测试,分析和计算建模以及机器学习,以深入了解人类大脑如何对大而快速的负载做出反应。这项研究的结果将对美国国民健康和福利产生积极影响,并将有助于组织力学,创伤性脑损伤和机器学习领域。该项目将导致新的课程,并涉及来自代表性不足的少数群体的贡献,这项研究的首要目标是了解大脑在其自然生物物理环境中的高应变率力学。第一阶段将集中在小变形和动态应变率下的组织响应。将对来自多个大脑区域的脑组织样本进行宽带磁共振弹性成像实验,以开发线性粘弹本构模型。将开发多保真度模型,以将观察到的响应与可用的窄带体内脑组织响应融合,用于预测在宽范围的加载频率下体内脑组织的线性粘弹性。第二阶段将集中在大变形和极端应变率下的组织响应。准静态和动态力学测试将进行开发粘超弹性本构模型。将开发物理信息多保真度模型,以融合前一阶段中表征的离体粘弹性超弹性响应与体内线性粘弹性响应。这项研究将通过深入了解体内和离体组织力学之间的关系以及在极端负荷条件下适用的活体大脑力学特性的首次全场地图,大大促进我们对大脑生物力学的理解。该项目由生物力学和机械生物学(BMMB)计划和刺激竞争研究的既定计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kshitiz Upadhyay其他文献
First Daytime Red‐Line Emission Measurements of the Stable Auroral Red (SAR) Arcs
稳定极光红 (SAR) 弧的首次白天红线发射测量
- DOI:
10.1029/2023gl106292 - 发表时间:
2024 - 期刊:
- 影响因子:5.2
- 作者:
Kshitiz Upadhyay;D. Pallamraju - 通讯作者:
D. Pallamraju
Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-based Machine Learning Approach.
人体头部形状对脑外伤风险的影响:基于高斯过程回归的机器学习方法。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.2
- 作者:
Kshitiz Upadhyay;Roshan Jagani;Dimitris G. Giovanis;A. Alshareef;A. Knutsen;Curtis L. Johnson;Aaron Carass;P. Bayly;Michael D. Shields;K. T. Ramesh - 通讯作者:
K. T. Ramesh
Kshitiz Upadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
- 批准号:
2337381 - 财政年份:2024
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
- 批准号:
2337380 - 财政年份:2024
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323728 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Scalable Performance and Accuracy analysis for Distributed and Extreme-scale systems (SPADE)
协作研究:框架:分布式和超大规模系统的可扩展性能和准确性分析 (SPADE)
- 批准号:
2311707 - 财政年份:2023
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant