SLES: Foundations of Safety-Aware Learning in the Wild
SLES:野外安全意识学习的基础
基本信息
- 批准号:2331669
- 负责人:
- 金额:$ 79.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) models today must operate amid increasingly dynamic and unpredictable environments. A crucial challenge for models deployed in the wild is that they will encounter unknown out-of-distribution (OOD) data, in addition to the known in-distribution (ID) data. Current approaches for training ML models, particularly in a supervised setting, are known to be brittle and lack necessary safety awareness, e.g., OOD data may be blindly classified as a known class with high confidence. The project's novelties are developing safety-aware learning methodologies and theoretical guarantees that can provably detect OOD data as models are deployed in the wild. The project's impacts are to enhance safety for a broad range of downstream applications that depend on artificial intelligence (AI) classification, including transportation, healthcare, commerce, and scientific discovery, so that they can properly handle unexpected input.This project will make AI understand better what it knows and doesn't know, so that it abstains from unexpected input instead of wrongly classifying with supreme confidence. Technically, the team of researchers will design new algorithms that can leverage a large amount of real-world unlabeled data that arises ubiquitously in the model's deployment environment. Learning from such data can be challenging due to its heterogeneity (mixed with ID and OOD data) and non-stationarity (changes over time). To address the challenges, the project designs new machine learning algorithms that provably use unlabeled wild data for OOD safety-aware learning, online OOD detection to adapt to changing environments, and OOD detection with foundation models. The learning framework will be evaluated by a balance of empirical experimentation and theoretical understanding.This research is supported by a partnership between the National Science Foundation and Open Philanthropy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的机器学习(ML)模型必须在日益动态和不可预测的环境中运行。部署在野外的模型面临的一个关键挑战是,除了已知的分布(ID)数据外,它们还将遇到未知的分布外(OOD)数据。目前用于训练ML模型的方法,特别是在监督环境中,已知是脆弱的,并且缺乏必要的安全意识,例如,OOD数据可以被盲分类为具有高置信度的已知类别。该项目的创新之处在于开发安全意识学习方法和理论保证,这些方法和理论保证可以在模型部署在野外时可证明地检测OOD数据。该项目的影响是提高依赖人工智能(AI)分类的广泛下游应用的安全性,使其能够正确处理意外输入,包括交通、医疗、商业和科学发现。该项目将使AI更好地了解它知道什么和不知道什么,从而避免意外输入,而不是以最高的信心错误分类。从技术上讲,研究人员团队将设计新的算法,可以利用模型部署环境中无处不在的大量真实世界未标记数据。 从这些数据中学习可能具有挑战性,因为它具有异质性(与ID和OOD数据混合)和非平稳性(随时间变化)。为了应对这些挑战,该项目设计了新的机器学习算法,可证明使用未标记的野生数据进行OOD安全感知学习,在线OOD检测以适应不断变化的环境,以及使用基础模型进行OOD检测。学习框架将通过经验实验和理论理解的平衡进行评估。这项研究得到了美国国家科学基金会和开放慈善机构之间的合作伙伴关系的支持。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharon Li其他文献
parameters of origin activation and repression follicle cells : Drosophila Integrative analysis of gene amplification in Material Supplemental
原始激活和抑制滤泡细胞的参数:果蝇材料补充中基因扩增的综合分析
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jane C. Kim;Jared T. Nordman;Fangyu Xie;H. Kashevsky;Thomas Eng;Sharon Li;D. MacAlpine;T. Orr - 通讯作者:
T. Orr
A Case of Acute Kidney Injury, Proteinuria, and Thrombotic Microangiopathy Associated With Sunitinib Therapy in Metastatic Pancreatic Neuroendocrine Tumor
转移性胰腺神经内分泌瘤舒尼替尼治疗相关急性肾损伤、蛋白尿和血栓性微血管病一例
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lawanya Singh;Daniel Matassa;Sharon Li - 通讯作者:
Sharon Li
replication initiation and fork progression Developmental control of gene copy number by repression of Material Supplemental
复制起始和分叉进展 通过抑制材料补充来控制基因拷贝数
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Noa Sher;G. Bell;Sharon Li;Jared T. Nordman;Thomas Eng;M. Eaton;D. MacAlpine;T. Orr - 通讯作者:
T. Orr
Recollection and familiarity support auditory working memory in a manner analogous to visual working memory
- DOI:
10.1016/j.cognition.2024.105987 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Chris Hawkins;Jon Venezia;Edward Jenkins;Sharon Li;Andrew Yonelinas - 通讯作者:
Andrew Yonelinas
DCAI: Data-centric Artificial Intelligence
DCAI:以数据为中心的人工智能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wei Jin;Haohan Wang;D. Zha;Qiaoyu Tan;Yao Ma;Sharon Li;Su - 通讯作者:
Su
Sharon Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharon Li', 18)}}的其他基金
CAREER: Foundations of Human-Centered Machine Learning in the Wild
职业:以人为中心的自然机器学习的基础
- 批准号:
2237037 - 财政年份:2023
- 资助金额:
$ 79.31万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Standard Grant
Social Foundations of Cryptography
密码学的社会基础
- 批准号:
EP/X017524/1 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Research Grant
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Research Grant
Social foundations of cryptography
密码学的社会基础
- 批准号:
EP/X016226/1 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 79.31万 - 项目类别:
Continuing Grant