RAISE: On D'Alembert's Paradox: Can airplanes fly in superfluid?

RAISE:关于达朗贝尔悖论:飞机能在超流体中飞行吗?

基本信息

  • 批准号:
    2332556
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

During the first half of the 20th century, there was a serious debate between the Cambridge and Gottingen schools about the role of viscosity/friction in generating lift over a wing; the former school asserts that viscosity is necessary, and the latter does not see any contradiction in generating lift by an ideal (non-viscous) fluid. This debate is deeply rooted in the 300-year-old paradox in fluid physics: d’Alembert paradox, which asserts that ideal fluids are forceless; they cannot lift an airplane. This century-old debate is rejuvenated due to a recent result which asserts that the flow field evolves to minimize total curvature; and a minimum-curvature flow over a wing is lifting even if the fluid is non-viscous. This principle of least curvature, which dates back to Hertz in the 19th century, is quite generic; it is applicable to fluids as well as other mechanical systems. For example, according to general relativity, a planet orbits the sun in the least curvature way over the space-time world. The goal of this Research Advanced by Interdisciplinary Science and Engineering (RAISE) cross-disciplinary grant between engineering and physics is to test the following hypothesis: Can an ideal flow generate lift? Since a superfluid (e.g., Helium II below 2K) behaves like an ideal fluid below a critical velocity, the following testable hypothesis will be investigated instead: Can airplanes fly in superfluid? The above hypothesis will be tested by creating a superfluid wind tunnel allowing a superfluid to flow over small wings of different shapes and measuring the resulting lift force and its time evolution. This research will lead to a new theory of lift from first principles in physics in contrast to the classical theory. Moreover, this research will correct the accepted wisdom that prevailed over a century about the viscous nature of lift generation. Hence, this study will resolve the 300-year-old d’Alembert paradox by showing that d’Alembert’s zero-force solution was only one of many possible solutions of Euler’s equation. And in numerous cases, Nature selects a lifting solution. This research will show the physics of the unsteady lifting mechanism, which is currently solely attributed to viscous effects. Ultimately, this research will lead to a new understanding of the role of viscosity in fluid mechanics.This project was funded by the NSF ENG/CBET Fluid Dynamics, ENG/CMMI Dynamics, Control and Systems Diagnostics, and MPS/DMR Condensed Matter Physics programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在世纪上半叶,剑桥学派和哥廷根学派就粘性/摩擦在机翼升力产生中的作用进行了激烈的争论;前一学派认为粘性是必要的,而后者认为理想(非粘性)流体产生升力没有任何矛盾。这场争论深深植根于流体物理学中有300年历史的悖论:达朗贝尔悖论,它断言理想流体是没有力的;它们不能举起飞机。这一世纪之久的争论由于最近的一个结果而重新活跃起来,该结果断言流场的发展使总曲率最小化;即使流体是非粘性的,机翼上的最小曲率流也是升力的。这个最小曲率原理可以追溯到世纪的赫兹,它是非常通用的;它适用于流体以及其他机械系统。例如,根据广义相对论,行星在时空世界中以最小曲率的方式绕太阳运行。这项由跨学科科学与工程(RAISE)跨学科资助的跨学科研究的目标是测试以下假设:理想的流动能产生升力吗?由于超流体(例如,氦II低于2K)在低于临界速度时表现得像一种理想流体,下面的可检验假设将被研究:飞机能在超临界流体中飞行吗? 上述假设将通过建立一个超流体风洞进行测试,该风洞允许超流体流过不同形状的小机翼,并测量由此产生的升力及其时间演变。 这一研究将导致一个新的理论,从第一性原理在物理学中的电梯相对于经典的理论。此外,这项研究将纠正世纪来关于升力产生的粘性性质的公认的智慧。因此,这项研究将解决300岁的达朗贝尔悖论表明,达朗贝尔的零力的解决方案只是众多可能的解决方案之一欧拉方程。在许多情况下,大自然选择了提升解决方案。这项研究将显示非定常升力机制的物理特性,目前仅归因于粘性效应。最终,这项研究将导致一个新的理解的作用,粘度在流体力学。这个项目是由NSF ENG/CBET流体动力学,ENG/CMMI动力学,控制和系统诊断,和MPS/DMR凝聚态物理程序资助。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haithem Taha其他文献

Haithem Taha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haithem Taha', 18)}}的其他基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Viscous Extension of the Classical Theory of Unsteady Aerodynamics
经典非定常空气动力学理论的粘性推广
  • 批准号:
    2005541
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Investigation of Dynamic Interactions Between Wing-Body and Aerodynamics in Bio-Inspired Flight
职业:研究仿生飞行中翼身与空气动力学之间的动态相互作用
  • 批准号:
    1846308
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
EAGER: Revisiting Vibrational Control Theory
EAGER:重新审视振动控制理论
  • 批准号:
    1709746
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Unsteady Hydrodynamics and Geometric Control of Pisciform Locomotion
合作研究:鱼形运动的非定常流体动力学和几何控制
  • 批准号:
    1635673
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似海外基金

A problem-solving environment for lagrange-d`Alembert intergrations
拉格朗日-达朗贝尔积分的问题解决环境
  • 批准号:
    368023-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了