SBIR Phase I: Artificial Intelligence for Automated Custom Avatar Creation
SBIR 第一阶段:用于自动创建自定义头像的人工智能
基本信息
- 批准号:2334192
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Small Business Innovation Research (SBIR) Phase I project will create a way for experienced animators to rapidly make high quality three-dimensional (3D) content, and for novices to create engaging 3D content without the need for years of technical training or powerful but expensive software. Engaging computer graphic content has revolutionized education, entertainment, medical, and virtual environments. This project will use artificial intelligence (AI) to unlock the full potential of 3D graphical content, a $17.21 billion annual market, by alleviating major bottlenecks in the workflow. While there are more than 62,000 animators currently employed in the United States, fewer than 10,000 work specifically at 3D animation studios, and a smaller proportion of them possess the skills for weight painting. Weight painting is a vital technique in 3D design that adds realism to characters, enabling them to move smoothly during animation. Compounding the difficulty, weight painting 3D models is a tedious task that can take an expert up to 2 days (or around 16 work hours) to manually complete one model. Smaller animation shops often do not have the expertise to perform this task at all and are unable to compete for bigger, more lucrative contracts. Furthermore, researchers and students at universities around the world are often unable to perform this weighting task, which reduces their ability to create animations for medical, athletic, and entertainment uses in augmented reality or virtual reality. This Small Business Innovation Research (SBIR) Phase I project will utilize deep neural networks (DNN) to create 3D models from text input as well as a weight-painted rig from an industry-standard skeleton system and a 3D model mesh. The technology converts the mesh and skeleton into a format that can be processed by machine learning (ML) code, introducing a brand-new data structure. Additionally, the project will explore an adaptation of the COO (Coordinate List) matrix, a sparse matrix that performs effectively with neural networks but faces challenges when applied to machine learning tasks in 3D space where coordinate ordering is uncertain. The most difficult issues, such as weight painting and modeling, have been hampered by four specific limitations: 1. Lack of ground-truth, 2. Limited training data, 3. Lack of a-priori ML architecture, and 4. Lack of robustness and specificity for non-gaussian data. This project will make inroads into each of these areas by establishing a methodology for incorporating and transforming non-gaussian data for DNN analysis and will create a comprehensive data training set while establishing a domain specific ground-truth based on the canonical Turing test.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小型企业创新研究(SBIR)第一阶段项目将为经验丰富的动画师创造一种快速制作高质量三维(3D)内容的方法,并为新手创造引人入胜的3D内容,而不需要多年的技术培训或强大但昂贵的软件。引人入胜的计算机图形内容已经彻底改变了教育、娱乐、医疗和虚拟环境。该项目将使用人工智能(AI)来释放3D图形内容的全部潜力,这是一个每年172.1亿美元的市场,通过缓解工作流程中的主要瓶颈。虽然目前在美国有超过62,000名动画师,但只有不到10,000人专门在3D动画工作室工作,其中一小部分人拥有重量绘画的技能。权重绘制是3D设计中的一项重要技术,可为角色添加真实感,使其能够在动画期间平滑移动。加重难度,3D模型的重量绘制是一项繁琐的任务,专家可能需要长达2天(或大约16个工作小时)才能手动完成一个模型。规模较小的动画商店通常根本不具备执行这项任务的专业知识,无法竞争更大,更有利可图的合同。此外,世界各地大学的研究人员和学生通常无法执行此加权任务,这降低了他们在增强现实或虚拟现实中创建用于医疗,体育和娱乐用途的动画的能力。 这个小型企业创新研究(SBIR)第一阶段项目将利用深度神经网络(DNN)从文本输入创建3D模型,以及从行业标准骨架系统和3D模型网格创建重绘钻机。该技术将网格和骨架转换为可由机器学习(ML)代码处理的格式,引入了一种全新的数据结构。此外,该项目将探索COO(坐标列表)矩阵的适应性,这是一种稀疏矩阵,可以有效地与神经网络一起执行,但在应用于坐标排序不确定的3D空间中的机器学习任务时面临挑战。最困难的问题,如重量绘画和建模,受到四个具体限制的阻碍:1。缺乏真实性,2有限的训练数据,3。缺乏先验ML架构,以及4。对非高斯数据缺乏鲁棒性和特异性。该项目将通过建立一种方法来整合和转换DNN分析的非高斯数据,并将创建一个全面的数据训练集,同时建立一个特定领域的地面数据库,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Flanders其他文献
Benjamin Flanders的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: A Manufacturing Monitoring System Using Sound Spectrograms and Artificial Intelligence
SBIR 第二阶段:使用声谱图和人工智能的制造监控系统
- 批准号:
2335395 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: Artificial Gravity Stabilization System for Space Habitats
SBIR 第一阶段:太空栖息地人工重力稳定系统
- 批准号:
2335173 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
- 批准号:
2335605 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
- 批准号:
2336079 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
- 批准号:
2208248 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase II: Arctic Environmental Modeling with Augmentation and Curation from an Artificial Intelligence Engine
SBIR 第二阶段:通过人工智能引擎进行增强和管理的北极环境建模
- 批准号:
2213136 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Artificial Intelligence (AI)-enabled Personalized Employability Curriculum (APEC)
SBIR 第一阶段:人工智能 (AI) 支持的个性化就业能力课程 (APEC)
- 批准号:
2230864 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Artificial intelligence powered optical spectrometer technology for farm-level milk testing
SBIR 第二阶段:用于农场级牛奶检测的人工智能驱动的光学光谱仪技术
- 批准号:
2233881 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement