EAGER: SSMCDAT2023: Deep learning Gibbs free energy functions to guide solid-state material synthesis

EAGER:SSMCDAT2023:深度学习吉布斯自由能函数指导固态材料合成

基本信息

  • 批准号:
    2334275
  • 负责人:
  • 金额:
    $ 19.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARY:This award is made on an EAGER proposal. It supports progress on a project advanced at the SSMCDAT 2023 Datathon held at Lehigh University. This EAGER award supports research aimed at advancing our understanding of how to synthesize solid inorganic materials, which serve as the cornerstone for novel functional devices to meet societal needs for clean energy, environmental sustainability, and human welfare. Nowadays, many new inorganic materials have been virtually designed using computers, but they have rarely been converted into real applications because of missing knowledge of how to synthesize them in practice. In this project, a team of interdisciplinary researchers with expertise in materials science and computer science will develop a data-driven framework to predict the best ways to synthesize these computationally designed materials. The team will utilize deep learning algorithms of artificial intelligence to efficiently predict the free energies of the material to be synthesized and their possible precursors, considering the effects of temperature, pressure, and chemical compositions of the materials. With these predictions, the team will assess the feasibility of the chemical reactions associated with synthesis and correspondingly identify the optimal reaction conditions. To validate and improve their computational predictions, the researchers will also conduct laboratory experiments where they will closely monitor the synthesis process as it happens using a real time characterization technique. To demonstrate the effectiveness of their approach, the researchers will focus on successfully synthesizing a group of novel inorganic compounds known as transition metal oxynitrides, which are promising for energy conversion applications but not yet fully realized experimentally. Through this project, the team aims to bridge the gap between computational design and practical synthesis, unlocking new possibilities for novel functional materials that can benefit society.This award also supports activities to make the field of science and engineering more inclusive and diverse. It will broaden the participation of women and young girls in these fields, especially in countries in eastern Africa. It will also promote research involvement among undergraduate students from underrepresented backgrounds. Moreover, the researchers will develop new educational materials to teach data-driven materials science to undergraduate students at Drexel University. TECHNICAL SUMMARY:This award is made on an EAGER proposal. It supports progress on a project advanced at the SSMCDAT 2023 Datathon held at Lehigh University. This EAGER award supports research aimed at advancing scientific knowledge in the synthesizability of solid-state inorganic materials, especially those that have been computationally designed but not yet realized experimentally. The research will develop a data-driven framework, integrating deep learning algorithms, computational thermodynamic modeling, and validation experiments to efficiently predict synthesis pathways and optimal conditions. Utilizing deep learning algorithms, the framework will predict temperature-dependent Gibbs free energy functions for various compound stoichiometries, based on the relationship between thermochemical properties of inorganic compounds and their electronic structures. With the predictions of Gibbs free energy functions for the compound to be synthesized and its various possible precursors, the framework will then model the thermodynamics of each candidate synthesis reaction in the context of the CALculation of PHAse Diagram (CALPHAD) method. Suitable precursors and synthesis conditions will be rationally identified by assessing the dependence of reaction spontaneity on the key controlling parameters of practical synthesis. Experimental understanding of the reaction pathway and its dependence on reaction conditions obtained through an in situ synthesis approach will be used to validate and improve modeling predictions. The team will focus on successfully synthesizing a group of computationally designed transition metal oxynitrides, highly interesting for energy conversion applications but not yet fully realized experimentally, as a demonstration of the framework's capabilities. Through this project, the team aims to bridge the gap between computational design and practical synthesis, unlocking new possibilities for novel functional materials that can benefit society.This award also supports various education and outreach activities that will 1) expand the involvement of women and young girls in the fields of science and engineering, particularly in countries in eastern Africa; 2) promote research participation among underrepresented undergraduate students; and 3) develop new learning modules that incorporate data-driven materials science in the undergraduate curriculum at Drexel University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:该奖项是根据EAGER提案颁发的。它支持在利哈伊大学举行的SSMCDAT 2023数据马拉松上推进的项目进展。该奖项支持旨在提高我们对如何合成固体无机材料的理解的研究,这些材料是新型功能设备的基石,可以满足社会对清洁能源、环境可持续性和人类福利的需求。目前,许多新型无机材料都是利用计算机虚拟设计出来的,但由于缺乏在实践中如何合成它们的知识,它们很少被转化为实际应用。在这个项目中,一组具有材料科学和计算机科学专业知识的跨学科研究人员将开发一个数据驱动的框架,以预测合成这些计算设计材料的最佳方法。该团队将利用人工智能的深度学习算法,有效地预测合成材料的自由能及其可能的前体,考虑到材料的温度、压力和化学成分的影响。根据这些预测,该团队将评估与合成相关的化学反应的可行性,并相应地确定最佳反应条件。为了验证和改进他们的计算预测,研究人员还将进行实验室实验,在那里他们将使用实时表征技术密切监测合成过程。为了证明他们的方法的有效性,研究人员将专注于成功合成一组被称为过渡金属氮化氧的新型无机化合物,这些化合物有望用于能量转换应用,但尚未在实验中完全实现。通过这个项目,该团队旨在弥合计算设计和实际合成之间的差距,为能够造福社会的新型功能材料打开新的可能性。该奖项还支持使科学和工程领域更具包容性和多样性的活动。它将扩大妇女和年轻女孩在这些领域的参与,特别是在东非国家。它还将促进来自代表性不足背景的本科生参与研究。此外,研究人员将开发新的教材,向德雷塞尔大学的本科生教授数据驱动的材料科学。技术概述:该奖项是根据EAGER提案颁发的。它支持在利哈伊大学举行的SSMCDAT 2023数据马拉松上推进的项目进展。该奖项旨在支持旨在推进固态无机材料合成科学知识的研究,特别是那些已经通过计算设计但尚未通过实验实现的研究。该研究将开发一个数据驱动的框架,集成深度学习算法、计算热力学建模和验证实验,以有效地预测合成途径和最佳条件。利用深度学习算法,该框架将基于无机化合物的热化学性质及其电子结构之间的关系,预测各种化合物化学计量的温度依赖的吉布斯自由能函数。根据所要合成的化合物及其各种可能的前体的吉布斯自由能函数的预测,该框架将在相图计算(CALPHAD)方法的背景下对每个候选合成反应的热力学进行建模。通过评价反应自发性对实际合成关键控制参数的依赖性,合理确定合适的前驱体和合成条件。通过原位合成方法获得的反应途径及其对反应条件的依赖性的实验理解将用于验证和改进建模预测。该团队将专注于成功合成一组计算设计的过渡金属氮化物,这对于能量转换应用非常有趣,但尚未在实验中完全实现,作为框架能力的演示。通过这个项目,该团队旨在弥合计算设计和实际合成之间的差距,为能够造福社会的新型功能材料打开新的可能性。该奖项还支持各种教育和推广活动,这些活动将1)扩大妇女和年轻女孩在科学和工程领域的参与,特别是在东非国家;2)促进代表性不足的本科生参与研究;3)开发新的学习模块,将数据驱动的材料科学纳入德雷塞尔大学的本科课程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong-Jie Hu其他文献

Tuning the 1D-to-2D transition in lepidocrocite titanate nanofilaments via polymer wrapping
  • DOI:
    10.1016/j.matt.2024.08.013
  • 发表时间:
    2024-10-02
  • 期刊:
  • 影响因子:
  • 作者:
    Tongjie Zhang;Shichen Yu;Yuean Wu;Mohamed A. Ibrahim;Adam D. Walter;Gregory R. Schwenk;Yong-Jie Hu;Michel W. Barsoum;Christopher Y. Li
  • 通讯作者:
    Christopher Y. Li
Three-Flap Reconstruction of a Large Defect Caused by Radical Resection of Advanced Oral Cancer
  • DOI:
    10.1016/j.joms.2007.07.005
  • 发表时间:
    2008-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chen-Ping Zhang;Lai-Ping Zhong;Yong-Jie Hu;Zhi-Yuan Zhang
  • 通讯作者:
    Zhi-Yuan Zhang
Formation of Imath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si6.svg" class="math"msubmrow/mrowmn1/mn/msub/math stacking fault by deformation defect evolution from grain boundaries in Mg
镁中由晶界处的变形缺陷演化形成的 Imath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si6.svg" class="math"msubmrow/mrowmn1/mn/msub/math 堆垛层错。
  • DOI:
    10.1016/j.jma.2022.07.010
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    13.800
  • 作者:
    Yong-Jie Hu;Vaidehi Menon;Liang Qi
  • 通讯作者:
    Liang Qi
Computationally guided alloy design and microstructure-property relationships for non-equiatomic Ti–Zr–Nb–Ta–V–Cr alloys with tensile ductility made by laser powder bed fusion
  • DOI:
    10.1016/j.msea.2024.146922
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dillon Jobes;Daniel Rubio-Ejchel;Lucero Lopez;William Jenkins;Aditya Sundar;Christopher Tandoc;Jacob Hochhalter;Amit Misra;Liang Qi;Yong-Jie Hu;Jerard V. Gordon
  • 通讯作者:
    Jerard V. Gordon
Probing rapid solidification pathways in refractory complex concentrated alloys via multimodal synchrotron X-ray imaging and melt pool-scale simulation
  • DOI:
    10.1557/s43578-024-01474-7
  • 发表时间:
    2024-11-02
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Dillon K. Jobes;Yuanren Liu;Lucero Lopez;Seunghee Oh;Ashley Bucsek;Daniel Rubio-Ejchel;Christopher Tandoc;Yong-Jie Hu;Jerard V. Gordon
  • 通讯作者:
    Jerard V. Gordon

Yong-Jie Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong-Jie Hu', 18)}}的其他基金

Travel Support for Students to Participate at the Additive Manufacturing with Powder Metallurgy Conference (AMPM2024); Pittsburgh, Pennsylvania; 16-19 June 2024
为学生参加粉末冶金增材制造会议(AMPM2024)提供差旅支持;
  • 批准号:
    2329412
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
EAGER: SSMCDAT2023: Database generation to identify trends in inter- and intra-polyhedral connectivity and energy storage behavior
EAGER:SSMCDAT2023:生成数据库以确定多面体间和多面体内连接和能量存储行为的趋势
  • 批准号:
    2334240
  • 财政年份:
    2023
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334386
  • 财政年份:
    2023
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334385
  • 财政年份:
    2023
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
EAGER: SSMCDAT2023: Natural Language Processing and Large Language Models for Automated Extraction of Materials Chemistry Data from Scientific Literature
EAGER:SSMCDAT2023:用于从科学文献中自动提取材料化学数据的自然语言处理和大型语言模型
  • 批准号:
    2334411
  • 财政年份:
    2023
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了