Formation Mechanism of Wind Ripples

风波纹的形成机制

基本信息

项目摘要

Sand surfaces develop ripples and dunes in almost every known environment. Because of their ubiquity, ripples preserved in the geological record are invaluable to interpret past or remote climates, atmospheric conditions and fluvial regimes. In this context, understanding how ripples form is crucial to relate their size to environmental factors. According to conventional wisdom, decameter-scale dunes and decimeter-scale ripples on Earth emerge from clearly different processes related to wind motion and sand transport. However, recent experiments shattered this clean distinction by showing the emergence of an unexplained second type of wind ripple, somehow akin to water ripples and large ripples on Mars. The proposed investigation of this potentially ubiquitous new type of bedform can alter the interpretation of ripples in the field and the geological record, and shed light into some unexplored complexities of sediment transport. Broader impacts include the development of several public exhibits intended for K-12 students and educators, in collaboration with outreach experts at TAMU. The project will also provide research and educational opportunities for two early career principal investigators and undergraduate and graduate students.This research will investigate the emergence of these new “hydrodynamic” (also called “drag”) ripples on Earth using a combination of Computational Fluid Dynamics (CFD) and grain-scale transport simulations. The goal is to uncover the physical mechanisms controlling the origin and scaling of meso-scale bedforms (ripples) on Earth, and by extension, on water and other planetary bodies such as Mars, Titan and Venus. The three objectives are: validate and calibrate Hanratty’s hydrodynamic model, estimate the transport saturation length, and explain the transition from “impact” to “hydrodynamic” ripples. The central hypotheses are that there is a hidden sub-scale modulation of the aeolian transport layer that can explain the new observations and that hydrodynamic-driven instabilities become less relevant at a large enough grain size, for which only “impact” ripples are to be expected.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几乎在所有已知的环境中,沙表面都会形成波纹和沙丘。由于它们的普遍性,地质记录中保存的涟漪对于解释过去或遥远的气候,大气条件和河流状况是非常宝贵的。在这种情况下,了解涟漪如何形成对于将其大小与环境因素联系起来至关重要。根据传统观点,地球上十米级的沙丘和分米级的涟漪是由与风运动和沙子输送有关的明显不同的过程产生的。然而,最近的实验打破了这种清晰的区别,显示出一种无法解释的第二种风涟漪的出现,在某种程度上类似于火星上的水波纹和大波纹。对这种潜在的普遍存在的新型底形的拟议调查可以改变对实地和地质记录中涟漪的解释,并揭示一些未探索的沉积物输运的复杂性。更广泛的影响包括与TAMU的外联专家合作,为K-12学生和教育工作者开发了几个公共展览。该项目还将为两位早期职业生涯的主要研究人员以及本科生和研究生提供研究和教育机会。这项研究将使用计算流体动力学(CFD)和颗粒尺度传输模拟相结合的方法来研究这些新的“流体动力学”(也称为“阻力”)涟漪在地球上的出现。目标是揭示控制地球上以及水和其他行星体(如火星、泰坦和金星)上中尺度底形(涟漪)的起源和尺度的物理机制。这三个目标是:验证和校准Hanratty的流体动力学模型,估计运输饱和长度,并解释从“影响”到“流体动力学”涟漪的过渡。中心假设是,有一个隐藏的亚尺度调制的风成输送层,可以解释新的观测和流体动力驱动的不稳定性变得不太相关,在一个足够大的粒度,只有“影响”这一奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Orencio Duran Vinent其他文献

Orencio Duran Vinent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
  • 批准号:
    11104247
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
Effect of Mechanical Strain on Water Treeing Mechanism of Dynamic Cable for Floating Offshore Wind Applications
机械应变对浮动海上风电动力电缆水树机制的影响
  • 批准号:
    2905953
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Studentship
Study on fatigue damage mechanism of cedar wood based on continuous observation toward the application to wind turbine blades
基于连续观察的雪松木疲劳损伤机理研究及其在风力涡轮机叶片中的应用
  • 批准号:
    23K05345
  • 财政年份:
    2023
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analyzing and modeling for dynamic mechanism of tree failure caused by strong wind and rain
强风雨树木破坏动力机制分析与建模
  • 批准号:
    20H03024
  • 财政年份:
    2020
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nanoscale Structure Control of Metallic Material Through Electrical Wind Force and Mechanism Clarification
通过电风力控制金属材料的纳米级结构及机理阐明
  • 批准号:
    20K20531
  • 财政年份:
    2020
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Elucidation of generation and development mechanism of wind-wave in polar region and formulation of its bulk equation
极地风波产生、发展机制的阐明及其体方程的建立
  • 批准号:
    20K04699
  • 财政年份:
    2020
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of fatigue damage healing technology of metals by electron wind force control and elucidation of atom rearrangement and recombination mechanism
电子风力控制金属疲劳损伤修复技术进展及原子重排复合机制的阐明
  • 批准号:
    19K21925
  • 财政年份:
    2019
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Theoretical and observational studies of the driving mechanism of the solar wind
太阳风驱动机制的理论与观测研究
  • 批准号:
    19J00567
  • 财政年份:
    2019
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study and application of the sounding mechanism of wind instruments with large-scale simulations
管乐器发声机理的大规模模拟研究与应用
  • 批准号:
    19K03655
  • 财政年份:
    2019
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Overlooked Mechanism for Wind-driven Circulations in Semi-enclosed Marginal Seas
半封闭边缘海中被忽视的风驱动环流机制
  • 批准号:
    1922538
  • 财政年份:
    2019
  • 资助金额:
    $ 33.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了