RAPID: Exploring an AI Literacies Framework for Young Children: A Delphi Study

RAPID:探索幼儿人工智能素养框架:德尔菲研究

基本信息

  • 批准号:
    2334829
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Artificial intelligence (AI) is rapidly transforming society, and it is becoming increasingly clear to educators and researchers that K-12 students must be prepared for an AI-driven future. One crucial area that requires research is early childhood education (ECE) for children aged 5 to 8 years old. The potential impact of AI on early childhood cannot be overstated: there are far-reaching implications for language development, cognitive skills, sensory perception, and social-emotional development, which are the holistic goals of ECE. Prior research suggests that exposing young children to AI is feasible and can have positive effects on their AI knowledge and skills. These studies often focus exclusively on how children learn with and about AI, without fully considering the holistic goals and practices of ECE. There is an urgent need to address such issues in ECE AI education and ensure early AI learning is appropriate, effective, and equitable. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097) and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.This project will develop an interdisciplinary framework for ECE AI learning by using the Delphi methodology, an iterative process of converging expert opinions on emerging topics. A panel of 30 experts of diverse and inclusive representation from three fields: AI, Child Development and Early Education, and Child-Computer Interaction will be recruited. These experts will explore three fundamental questions across cognitive, situated, and critical framing of AI. (1) What: What are the most appropriate AI learning goals and content for young children? (2) Who: What developmental advantages/constraints and equity concerns must be considered for AI learning? and (3) How: How can we introduce AI effectively and equitably? The research process involves three iterative rounds of discussion, survey, and review of materials prepared and synthesized by the research team. By articulating the underlying concepts and principles of AI literacies in ECE through cognitive, situated, and critical framing and from multidisciplinary perspectives, the resulting framework will help advance our understanding of how young children can develop knowledge and skills related to AI and inform future endeavors in this area, with particular attention to individuals with special needs and cultural relevance to marginalized and underserved communities. The outcome of the project also has the potential to guide the development of age-appropriate curricula and pedagogy for young children as well as provide a basis for assessing and evaluating AI literacies in young children.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)正在迅速改变社会,教育工作者和研究人员越来越清楚,K-12学生必须为AI驱动的未来做好准备。需要研究的一个关键领域是5至8岁儿童的幼儿教育。人工智能对幼儿期的潜在影响怎么强调都不过分:对语言发展、认知技能、感官知觉和社会情感发展都有深远的影响,这些都是幼儿教育的整体目标。此前的研究表明,让幼儿接触人工智能是可行的,可以对他们的人工智能知识和技能产生积极影响。这些研究通常只关注儿童如何学习人工智能,而没有充分考虑ECE的整体目标和实践。迫切需要在欧洲经委会人工智能教育中解决这些问题,并确保早期人工智能学习是适当、有效和公平的。本提案是对亲爱的同事信(DCL)的回应:在正式和非正式环境中快速加速人工智能在K-12教育中的研究(NSF 23-097),并由学生和教师创新技术经验(ITEST)计划资助,该计划支持建立对实践,计划要素,背景和过程有助于提高学生对科学,技术,工程和数学(STEM)以及信息和通信技术(ICT)职业的知识和兴趣。该项目将通过使用德尔菲方法,就新出现的主题汇集专家意见的迭代过程。将招募来自三个领域的30名专家组成的专家小组:人工智能,儿童发展和早期教育以及儿童-计算机交互。这些专家将探讨人工智能的认知、情境和批判框架中的三个基本问题。 (1)什么是最适合幼儿的AI学习目标和内容?(2)谁:人工智能学习必须考虑哪些发展优势/限制和公平问题?以及(3)如何:我们如何有效和公平地引入人工智能?研究过程包括三个迭代轮的讨论,调查和审查的材料准备和综合的研究小组。通过认知,情境和批判性框架以及多学科视角,阐明欧洲经委会人工智能素养的基本概念和原则,由此产生的框架将有助于促进我们对幼儿如何发展与人工智能相关的知识和技能的理解,并为这一领域的未来努力提供信息,特别关注具有特殊需求和文化相关性的个人,以边缘化和服务不足的社区。该项目的成果也有可能指导开发适合幼儿年龄的课程和教学法,并为评估和评估幼儿的人工智能素养提供基础。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaohui Wang其他文献

Distribution system state estimation considering the uncertainty of DG output
考虑DG输出不确定性的配电系统状态估计
Large-sized graphene oxide nanosheets increase DC–T cell synaptic contact and the efficacy of DC vaccines against SARS-CoV-2.
大尺寸氧化石墨烯纳米片可增加 DC-T 细胞突触接触以及 DC 疫苗针对 SARS-CoV-2 的功效。
  • DOI:
    10.1002/adma.202102528
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Qianqian Zhou;Hongjing Gu;Sujing Sun;Yulong Zhang;Yangyang Hou;Chenyan Li;Yan Zhao;Ping Ma;Liping Lv;Subi Aji;Shihui Sun;Xiaohui Wang;Linsheng Zhan
  • 通讯作者:
    Linsheng Zhan
Dissecting Role of N-glycan at N413 in Toll-like Receptor 3 via Molecular Dynamics Simulations
通过分子动力学模拟解析 Toll 样受体 3 中 N413 处 N 聚糖的作用
Virtual Reality of 3D Digital Factory Based on Coastal Environment
基于海岸环境的3D数字工厂虚拟现实
  • DOI:
    10.2112/si83-085.1
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaohui Wang
  • 通讯作者:
    Xiaohui Wang
Synthesis, characterization and photodynamic activity of half-sandwich rhodium(III) complexes with curcuminoids
姜黄素半夹心铑(III)配合物的合成、表征及光动力活性

Xiaohui Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Exploring Changing Fertility Intentions in China
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
  • 批准号:
    2336998
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
  • 批准号:
    2327971
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Emotional AI in the Japanese and German Workplace: Exploring Cultural Diversity in AI Ethics
日本和德国工作场所的情感人工智能:探索人工智能伦理中的文化多样性
  • 批准号:
    23KK0003
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
  • 批准号:
    2327972
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
STTR Phase I: Exploring Artificial Intelligence (AI)-Enabled Skills Data For Education-to-Employment Transitions and Career Support
STTR 第一阶段:探索人工智能 (AI) 支持的技能数据,以实现从教育到就业的过渡和职业支持
  • 批准号:
    2112276
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Exploring Artificial Intelligence (AI) for Automated Playtesting
探索用于自动化游戏测试的人工智能 (AI)
  • 批准号:
    563312-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    University Undergraduate Student Research Awards
FW-HTF-P/Collaborative Research: Exploring Tools to Help Workers and Organizations Adapt to AI-enabled Robots
FW-HTF-P/协作研究:探索帮助工人和组织适应人工智能机器人的工具
  • 批准号:
    2114791
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Exploring Live Animation Concerts using the AI-based animation synchronization system
使用基于人工智能的动画同步系统探索现场动画音乐会
  • 批准号:
    21K00190
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring Trust in AI Enabled Systems
探索人工智能系统的信任
  • 批准号:
    2407974
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Studentship
Category II: Exploring Neural Network Processors for AI in Science and Engineering
第二类:探索科学与工程中人工智能的神经网络处理器
  • 批准号:
    2005369
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了