Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance

合作研究:增强机动性和耐用性的太阳能空中变压器

基本信息

  • 批准号:
    2334994
  • 负责人:
  • 金额:
    $ 33.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Under this Foundational Research in Robotics (FRR) project, a team of researchers from Tuskegee University and Purdue University will investigate origami structures to create extendable wings for unpiloted aerial vehicles (UAVs), with four gimballed propellors capable of operating vertically in rotorcraft mode or horizontally in fixed-wing mode. Wing extension and retraction is always performed in rotorcraft mode, respectively just before or just after gimballing of the propellors. The shape-morphing capability will allow solar cells mounted on the wing surfaces to prolong fixed-wing operations, while enhancing agility and reducing vulnerability to wind gusts in rotorcraft flight. The project will also create associated algorithms for flight control and mission planning, to stabilize the rotorcraft mode during wing extension and retraction, to stabilize the aircraft during propellor gimballing, and to set rotorcraft and fixed-wing flight profiles and transition points based on mission requirements, characteristics, and constraints. Many UAV missions will benefit from the extended operational time, multifunctionality, and increased mobility conferred by the shape morphing wing and solar cells. These include surveillance and reconnaissance, search and rescue, and precision agriculture. Experiments will be conducted to demonstrate and optimize the performance of the new vehicle under a variety of realistic objectives and conditions. Additionally, joint educational activities will create communication and collaboration channels for faculty and students from both universities, laying the foundation for a continued and expanded partnership between the Tuskegee University Aerospace Science Engineering Department and the Purdue University Aeronautics and Astronautics Department.The technical challenge addressed by this research is that extending mission times requires a high surface area for mounting photovoltaic cells, however high surface areas correspond to high aerodynamic disturbance forces that may overwhelm the capabilities of the aircraft in rotorcraft mode. The solution explored in the research is to use morphing wings based on Miura folding patterns that extend for fixed wing operation and retract for rotorcraft operation. Features of the Miura fold patterns may be exploited to implement control surfaces equivalent to ailerons, flaps, and slats. The research approach encompasses design of a platform for integrating solar panels with hybrid UAVs, development of guidance and actuation strategies for a shape-morphing wing, implementation of learning-enabled control laws for efficient rotor conversion, and the establishment of a laddered procedure for system performance evaluation. Optimization algorithms are employed to improve computational efficiency and scalability for complex system design. The learning-enabled control framework enables real-time optimal control with reduced data training requirements. Through these technical efforts, the project seeks to have a significant impact on safety, reduced manpower, energy savings, and insights for future unmanned aerial systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个机器人基础研究(FRR)项目下,来自塔斯基吉大学和普渡大学的一组研究人员将研究折纸结构,为无人驾驶飞行器(UAV)创建可扩展的机翼,四个万向节螺旋桨能够在旋翼机模式下垂直操作或在固定翼模式下水平操作。机翼的伸展和收缩总是在旋翼机模式下进行,分别是在螺旋桨万向节转动之前或之后。形状变形能力将允许安装在机翼表面的太阳能电池延长固定翼操作,同时提高敏捷性并减少旋翼机飞行中对阵风的脆弱性。该项目还将为飞行控制和使命规划创建相关的算法,以在机翼伸展和收缩期间稳定旋翼机模式,在螺旋桨万向节期间稳定飞机,并根据使命要求、特性和约束设置旋翼机和固定翼飞行剖面和过渡点。许多无人机任务将受益于形状变形机翼和太阳能电池所赋予的延长的操作时间、多功能性和增加的机动性。其中包括监视和侦察、搜索和救援以及精准农业。将进行实验来演示和优化新车在各种现实目标和条件下的性能。此外,联合教育活动将为两所大学的教师和学生创造沟通和合作渠道,为塔斯基吉大学航空航天科学工程系和普渡大学航空航天系之间持续和扩大的伙伴关系奠定基础。这项研究所解决的技术挑战是,延长使命时间需要安装光伏电池的高表面积,然而,大的表面积对应于高的空气动力扰动力,其可能压倒旋翼机模式中的飞行器的能力。在研究中探索的解决方案是使用基于三浦折叠模式的变形机翼,该折叠模式用于固定翼操作和旋翼机操作。三浦折叠型的特点可以用来实现相当于副翼、襟翼和缝翼的操纵面。研究方法包括设计一个平台,用于将太阳能电池板与混合无人机集成,开发形状变形机翼的指导和驱动策略,实施有效的转子转换的学习控制律,以及建立系统性能评估的阶梯程序。采用优化算法来提高复杂系统设计的计算效率和可扩展性。支持学习的控制框架能够实现实时优化控制,同时降低数据训练要求。通过这些技术努力,该项目旨在对安全性、减少人力、节能和对未来无人机系统的见解产生重大影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changhuang Wan其他文献

Angle Fixability and Angle-Based Sensor Network Localization
角度固定性和基于角度的传感器网络定位
A crash introduction to Optimal Transport
最佳传输的崩溃介绍
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changhuang Wan;N. Courty;Rémi Flamary;Amaury Habrard
  • 通讯作者:
    Amaury Habrard
Alternating Minimization Algorithm for Polynomial Optimal Control Problems
多项式最优控制问题的交替最小化算法
Report for CSE 5339 2018 — ( OTMLSA ) Optimal Transport in Machine Learning and Shape Analysis Joint distribution optimal transportation for domain adaptation
CSE 5339 2018 报告 — (OTMLSA) 机器学习和形状分析中的最优传输域适应的联合分布最优传输
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changhuang Wan;N. Courty;Rémi Flamary;Amaury Habrard
  • 通讯作者:
    Amaury Habrard
An Optimization Algorithm for Multi-objective Optimization Problem by Using Envelope-dual Method
一种利用包络对偶法求解多目标优化问题的优化算法
  • DOI:
    10.1016/j.proeng.2013.12.046
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. H. Wang;Changhuang Wan;Chuangchuang Sun;R. W. Xia
  • 通讯作者:
    R. W. Xia

Changhuang Wan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412295
  • 财政年份:
    2024
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412296
  • 财政年份:
    2024
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
  • 批准号:
    2308306
  • 财政年份:
    2023
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing optimally customized-mode-selective photonic lanterns to enable the characterization of hundreds of exoplanets on solar system.
合作研究:开发最佳定制模式选择光子灯笼,以表征太阳系上数百颗系外行星。
  • 批准号:
    2308361
  • 财政年份:
    2023
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334995
  • 财政年份:
    2023
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229101
  • 财政年份:
    2023
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了