CAREER: Engineering next-generation adrenal gland organoids

职业:设计下一代肾上腺类器官

基本信息

项目摘要

Organoids are 3D, miniature versions of human organs, that help us learn about how organs grow and work. Organoids are useful for understanding human organ development, how cells talk to each other, and how our bodies fix themselves. This project focuses on making better organoids that act more like real organs. Organoids are usually made from special cells that can become many different cell types. With guidance, these cells organize themselves into a 3D shape that look like the real organ. Many organoids are not yet as good as they could be. First, researchers have made organoids for brains, kidneys, and lungs, but not all organs are represented as organoids yet. For example, adrenal gland organoids do not exist. Adrenal glands are critical for producing hormones that help us regulate stress, how much water to drink, and sexual development. Here, the aim is to make adrenal gland organoids. Second, most organoids are spheres, but most organs have different shapes; these shapes matter and adrenal gland organoids in the shape of real adrenal glands will be made. Third, big organoids sometimes have dead parts inside, because food and oxygen cannot reach the inside without blood vessels. Here, plant roots will be used to make straw-like tunnels into the organoids so that food can reach the inside. In a give-and-take approach, what is learned will be shared with others. In collaboration with artists, a room-size organoid sculpture will be created, and dances inspired by the science will be made. In return, the artists approach to the scientific problems will inspire the scientific paths. Additionally, middle and high school students will be taught through ceramic art infused science classes to model their own imaginary cells; and graduate students will create their own art-science liaison project. The overall goal of this project is to generate miniature engineered adrenal gland organoids in the native shape of the organ and to provide a vasculature-like structure that will allow them to mature. Goal 1: Make organoids that look like and function as adrenal glands. Since the shape or organs is important, it will be copied. The plan is to use 3D printing to make molds in the correct organ shape. Then, the cells will be added into these molds to grow the organoids. The engineered new organoids will be compared to spherical organoids to see if they work better. Goal 2: Make organoids that can grow bigger and live longer. Most organoids stop growing or die when they get too big. Here, plant roots will be stuck into the organoids to create straw-like structures that will allow food and oxygen to get to the inside of the organoids and keep the cells there alive, even if the organoids get big and old. In the end, this project will help researchers learn more about how to make better organoids. This project will culminate in an organoid symposium, where everyone can see what is learned about organoids through science, education and art.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
类器官是人体器官的3D微型版本,可以帮助我们了解器官如何生长和工作。类器官对于了解人体器官发育、细胞如何相互交谈以及我们的身体如何自我修复非常有用。该项目的重点是制造更好的类器官,使其更像真实的器官。类器官通常由特殊细胞组成,这些细胞可以变成许多不同的细胞类型。在指导下,这些细胞将自己组织成看起来像真实的器官的3D形状。许多类器官还没有达到应有的水平。首先,研究人员已经为大脑、肾脏和肺制造了类器官,但并非所有器官都被表示为类器官。 例如,肾上腺类器官不存在。肾上腺对产生激素至关重要,这些激素帮助我们调节压力,喝多少水和性发育。在这里,目标是制造肾上腺类器官。其次,大多数类器官是球体,但大多数器官具有不同的形状;这些形状很重要,并且将制成真实的肾上腺形状的肾上腺类器官。第三,大的类器官内部有时会有死亡的部分,因为没有血管,食物和氧气就无法到达内部。在这里,植物的根将被用来制造稻草般的隧道进入类器官,这样食物就可以到达内部。在一个给予和接受的方法中,学到的东西将与他人分享。与艺术家合作,将创建一个房间大小的类器官雕塑,并将制作受科学启发的舞蹈。反过来,艺术家对科学问题的态度也会启发科学的道路。此外,初中和高中学生将通过陶瓷艺术注入科学课程,以模拟自己的想象细胞;研究生将创建自己的艺术科学联络项目。该项目的总体目标是以器官的天然形状生成微型工程化肾上腺类器官,并提供一种血管样结构,使它们能够成熟。目标1:使类器官看起来像肾上腺,功能像肾上腺。由于形状或器官很重要,它将被复制。该计划是使用3D打印来制作正确器官形状的模具。然后,将细胞添加到这些模具中以生长类器官。工程设计的新类器官将与球形类器官进行比较,看看它们是否工作得更好。目标2:制造可以生长得更大、寿命更长的类器官。大多数类器官在变得太大时停止生长或死亡。在这里,植物的根将被插入类器官中,以创造出类似稻草的结构,使食物和氧气能够进入类器官内部,并保持细胞在那里存活,即使类器官变大变老。最终,该项目将帮助研究人员更多地了解如何制造更好的类器官。该项目将在类器官研讨会上达到高潮,每个人都可以看到通过科学,教育和艺术了解到的关于类器官的知识。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nadja Zeltner其他文献

Human pluripotent stem cell-derived functional sympathetic neurons express ACE2 and RAAS components: a framework for studying the effect of COVID-19 on sympathetic responsiveness
  • DOI:
    10.1007/s10286-021-00850-1
  • 发表时间:
    2022-01-29
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Hsueh-Fu Wu;Chia-Wei Huang;Kanupriya R. Daga;Ross A. Marklein;Natalia Ivanova;Nadja Zeltner
  • 通讯作者:
    Nadja Zeltner
Protocol for generating postganglionic sympathetic neurons using human pluripotent stem cells for electrophysiological and functional assessments
使用人类多能干细胞生成节后交感神经元进行电生理和功能评估的方案
  • DOI:
    10.1016/j.xpro.2024.102970
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Wu;Jennifer Art;Tripti Saini;Nadja Zeltner
  • 通讯作者:
    Nadja Zeltner
Norepinephrine transporter defects lead to sympathetic hyperactivity in stem cell and mouse models of Familial Dysautonomia
去甲肾上腺素转运蛋白缺陷导致干细胞和家族性自主神经功能障碍小鼠模型交感神经过度活跃
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Wu;Wenxin Yu;J. Carey;F. Lefcort;Hongxiang Liu;Nadja Zeltner
  • 通讯作者:
    Nadja Zeltner
Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review
  • DOI:
    10.1007/s10286-018-00587-4
  • 发表时间:
    2019-01-10
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Kenyi Saito-Diaz;Nadja Zeltner
  • 通讯作者:
    Nadja Zeltner
Overview of Methods to Differentiate Sympathetic Neurons from Human Pluripotent Stem Cells.
从人类多能干细胞中分化交感神经元的方法概述。

Nadja Zeltner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 52.42万
  • 项目类别:
    Standard Grant
Expanding Pathways for Preparing the Next Generation of Engineers: First-Year Engineering 2.0 (FYE2.0)
拓展培养下一代工程师的途径:一年级工程 2.0 (FYE2.0)
  • 批准号:
    2337003
  • 财政年份:
    2024
  • 资助金额:
    $ 52.42万
  • 项目类别:
    Standard Grant
Next-Generation Solvers for Complex Microwave Engineering Problems
复杂微波工程问题的下一代求解器
  • 批准号:
    DP240102682
  • 财政年份:
    2024
  • 资助金额:
    $ 52.42万
  • 项目类别:
    Discovery Projects
Equipment: MRI: Track 1 Acquisition of a Digital Real-Time Simulator to Enhance Research and Student Research Training in Next-Generation Engineering and Computer Science
设备: MRI:轨道 1 采购数字实时模拟器,以加强下一代工程和计算机科学的研究和学生研究培训
  • 批准号:
    2320619
  • 财政年份:
    2023
  • 资助金额:
    $ 52.42万
  • 项目类别:
    Standard Grant
Building Capacity for Research in Technology-Based Social Entrepreneurship Education for the Next Generation of Engineering Leaders
为下一代工程领导者建设基于技术的社会创业教育研究能力
  • 批准号:
    2321188
  • 财政年份:
    2023
  • 资助金额:
    $ 52.42万
  • 项目类别:
    Standard Grant
EBRC 2026: Engineering Biology for the Next-Generation Bioeconomy
EBRC 2026:下一代生物经济的工程生物学
  • 批准号:
    2341279
  • 财政年份:
    2023
  • 资助金额:
    $ 52.42万
  • 项目类别:
    Continuing Grant
Engineering the Next Generation of Safer Hsp90 Inhibitors
设计下一代更安全的 Hsp90 抑制剂
  • 批准号:
    10587304
  • 财政年份:
    2023
  • 资助金额:
    $ 52.42万
  • 项目类别:
Next-generation ART: Building a global network to create innovative technologies in m ammalian reproductive engineering
下一代 ART:建立全球网络以创造哺乳动物生殖工程创新技术
  • 批准号:
    23K20043
  • 财政年份:
    2023
  • 资助金额:
    $ 52.42万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Dental-Biomedical Engineering Scholars Training (D-Best) Program
牙科生物医学工程学者培训(D-Best)计划
  • 批准号:
    10845831
  • 财政年份:
    2023
  • 资助金额:
    $ 52.42万
  • 项目类别:
Rehabilitation & Engineering Center for Optimizing Veteran Engagement & Reintegration (RECOVER)
复原
  • 批准号:
    10762205
  • 财政年份:
    2023
  • 资助金额:
    $ 52.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了