CAREER: Chemically specific polymer models with field-theoretic simulations

职业:具有场论模拟的化学特定聚合物模型

基本信息

  • 批准号:
    2337554
  • 负责人:
  • 金额:
    $ 55.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYPolymers are long chain-like molecules that underlie diverse technologies ranging from surfactants and adhesives to biomaterials and batteries. Polymers also play a critical role in emerging technologies such as flexible electronics, organic solar cells and next-generation filtration membranes. In all of these applications, the chemical details of the polymers are critical: small chemical modifications to polymers can result in materials with drastically different properties. Unfortunately, it is exceptionally difficult to predict how changes in polymer chemistry will affect the resulting material properties and so new materials must be laboriously optimized through trial-and-error experimentation. This CAREER award supports the development of a new computational method that will accelerate the design of new polymeric materials using simulation. The basis for this new approach relies on an alternative strategy for simulating polymers that is considerably faster than existing techniques and can enable calculations that are currently intractable with existing methods. This project will extend this new method to include specific information about a polymer's chemistry while remaining efficient enough to predict the large structures inherent to polymeric materials. By accurately predicting the structure of polymers across this wide range of length scales, this new computational tool has the potential to significantly accelerate the design of new polymers for both existing and emerging applications.This CAREER award also supports educational and outreach activities that will train students at multiple education levels in modern computation. These activities will: (1) initiate a new coding club to provide coding experiences for middle-school girls, (2) expose undergraduates to computational research through Drexel's co-op program, and (3) train graduate students in polymeric simulations with online and freely accessible lectures and assignments. This educational platform incorporates key elements from the technical project into age-appropriate activities that will link the discovery process with its dissemination. TECHNICAL SUMMARYOne of the defining features of polymeric materials is a hierarchy of length scales that involves a complex interplay between monomer (1 nm), molecular (10 nm) and mesoscopic (100 nm) features. This hierarchy of length scales makes it challenging to design new polymeric materials because it is difficult to anticipate how chemical changes at the smallest length scales will propagate up to the largest length scales in a material. In this project, a new simulation method will be pursued that can simultaneously resolve both monomer-level chemistry and mesoscopic length scales within a polymeric material. The basis for this strategy is a new "multi-representation" approach where particle-based and field-theoretic simulations are linked together into a unified framework. Preliminary results indicate that this new method can accelerate calculations by several orders of magnitude yet involves no approximation or information loss relative to existing techniques. As such, this new framework has the potential to enable polymer simulations that are currently intractable and could provide new fundamental insights into how mesoscale structures emerge from monomer-level chemistry. This CAREER award supports the development of this new simulation method, the extension of the method to chemically specific interaction potentials and its application to intrinsically disordered polypeptides. More generally, this project also explores the fundamental intersections between particle and field-based simulations and how these methods can be combined together to provide facile access to molecular configurations, mesoscopic structure and free energies. This project will also advance the field-theoretic simulation method and will lead to the development of new tools and numerical methods that will broaden the applicability of this powerful, yet nascent, simulation technique.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性SUMMARY聚合物是长链状分子,构成了从表面活性剂和粘合剂到生物材料和电池的各种技术的基础。聚合物在柔性电子、有机太阳能电池和下一代滤膜等新兴技术中也发挥着关键作用。在所有这些应用中,聚合物的化学细节是至关重要的:对聚合物进行微小的化学修饰可以导致材料具有截然不同的性质。不幸的是,预测聚合物化学的变化将如何影响所产生的材料性能是异常困难的,因此必须通过反复试验来努力优化新材料。这一职业奖支持开发一种新的计算方法,该方法将加快使用模拟来设计新的聚合物材料。这种新方法的基础依赖于另一种模拟聚合物的策略,该策略比现有技术快得多,并且可以实现目前用现有方法难以处理的计算。该项目将扩展这一新方法,以包括关于聚合物化学的特定信息,同时保持足够的效率来预测聚合物材料固有的大结构。通过准确预测各种长度范围内的聚合物结构,这一新的计算工具有可能显著加快针对现有和新兴应用的新聚合物的设计。这一职业奖项还支持教育和推广活动,这些活动将在现代计算方面培训多个教育水平的学生。这些活动将:(1)发起一个新的编码俱乐部,为中学女生提供编码体验;(2)通过Drexel的合作项目让本科生接触到计算研究;(3)通过在线和免费获取的讲座和作业,培训研究生聚合模拟。这一教育平台将技术项目的关键要素纳入到适合年龄的活动中,将发现过程与其传播联系起来。技术总结聚合物材料的特征之一是长度等级,涉及单体(1 Nm)、分子(10 Nm)和介观(100 Nm)特征之间的复杂相互作用。这种长度尺度的层次结构使设计新的聚合物材料变得具有挑战性,因为很难预测在最小长度尺度下的化学变化将如何传播到材料中的最大长度尺度。在这个项目中,将寻求一种新的模拟方法,可以同时解析聚合物材料中单体水平的化学和介观长度尺度。这一策略的基础是一种新的“多重表示”方法,其中基于粒子的模拟和场论模拟被链接在一起,形成一个统一的框架。初步结果表明,与现有方法相比,这种新方法可以将计算速度提高几个数量级,而不涉及任何近似或信息损失。因此,这个新的框架有可能使目前难以处理的聚合物模拟成为可能,并可能为介观结构如何从单体水平化学中出现提供新的基本见解。该职业奖支持开发这种新的模拟方法,将该方法扩展到化学特定的相互作用势,并将其应用于本质上无序的多肽。更广泛地说,这个项目还探索了基于粒子和基于场的模拟之间的基本交集,以及如何将这些方法结合在一起,以提供对分子构型、介观结构和自由能的便捷访问。该项目还将推进场论模拟方法,并将导致新工具和数值方法的开发,从而扩大这一强大但新兴的模拟技术的适用性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Lequieu其他文献

Towards a Hybrid Human-Computer Scientific Information Extraction Pipeline
迈向混合人机科学信息提取管道
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roselyne B. Tchoua;K. Chard;Debra J. Audus;Logan T. Ward;Joshua Lequieu;Juan J. de Pablo;Ian T Foster
  • 通讯作者:
    Ian T Foster
Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.
使用高通量蛋白 A 色谱法研究宿主细胞蛋白与单克隆抗体的相互作用。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    V. Sisodiya;Joshua Lequieu;Maricel Rodríguez;Paul J. Mcdonald;Kathlyn P Lazzareschi
  • 通讯作者:
    Kathlyn P Lazzareschi
Combining particle and field-theoretic polymer models with multi-representation simulations.
Multiscale modeling of chromatin phase separation
  • DOI:
    10.1016/j.bpj.2023.11.2233
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Golembeski;Joshua Lequieu
  • 通讯作者:
    Joshua Lequieu

Joshua Lequieu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Reagents to Chemically Tag Specific Coronavirus Spike Proteins
化学标记特定冠状病毒刺突蛋白的试剂
  • 批准号:
    10259048
  • 财政年份:
    2021
  • 资助金额:
    $ 55.01万
  • 项目类别:
Targeting Effector Immune cells to Cancer with Chemically Self-Assembled Nanorings (CSANs)
使用化学自组装纳米环 (CSAN) 将效应免疫细胞靶向癌症
  • 批准号:
    10600820
  • 财政年份:
    2020
  • 资助金额:
    $ 55.01万
  • 项目类别:
Targeting Effector Immune cells to Cancer with Chemically Self-Assembled Nanorings (CSANs)
使用化学自组装纳米环 (CSAN) 将效应免疫细胞靶向癌症
  • 批准号:
    10347346
  • 财政年份:
    2020
  • 资助金额:
    $ 55.01万
  • 项目类别:
Non-Invasive Electrical Stimulation of Cells Chemically Predisposed for Excitability as a Cell Type-Specific Treatment for Depression
对化学上易兴奋的细胞进行非侵入性电刺激,作为针对抑郁症的细胞类型特异性治疗
  • 批准号:
    416878
  • 财政年份:
    2019
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Studentship Programs
Chemically reactive oligonucleotides for site-specific modification of RNA and artificial RNA editing
用于 RNA 定点修饰和人工 RNA 编辑的化学反应性寡核苷酸
  • 批准号:
    15H04633
  • 财政年份:
    2015
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
  • 批准号:
    8523915
  • 财政年份:
    2011
  • 资助金额:
    $ 55.01万
  • 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
  • 批准号:
    8728271
  • 财政年份:
    2011
  • 资助金额:
    $ 55.01万
  • 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
  • 批准号:
    9384666
  • 财政年份:
    2011
  • 资助金额:
    $ 55.01万
  • 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
  • 批准号:
    8338816
  • 财政年份:
    2011
  • 资助金额:
    $ 55.01万
  • 项目类别:
Chemically-Rich Structure and Dynamics in the Active Site of Tryptophan Synthase
色氨酸合酶活性位点的化学丰富结构和动力学
  • 批准号:
    8087430
  • 财政年份:
    2011
  • 资助金额:
    $ 55.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了