CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water
职业:基于人工智能的弹性农业生态系统综合养分、水流和地块模拟 (INSPIRE):气候智能型作物生产和清洁水的框架
基本信息
- 批准号:2338563
- 负责人:
- 金额:$ 50.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Climate-smart agricultural practices hold the promise of reducing carbon (C) emissions from farming, yet their implementation often presents complex trade-offs, particularly affecting nitrogen (N) and phosphorus (P) management. Integrated management of C, N, and P to ensure climate-smart crop production while preserving clean waters is hindered by several knowledge and technology gaps. To approach a solution for this grand challenge, this project aims to significantly advance the holistic understanding and modeling of the interconnected C, N, P, and water cycles in the Upper Mississippi River Basin. This goal will be pursued by developing an AI-based framework of integrated nutrient, streamflow, and parcel simulation for resilient agroecosystems (INSPIRE) that can easily ingest multi-source observations and provide an accurate and speedy quantification from the field to basin scale. The outcomes from this project are expected to provide valuable insights for policymakers and farming communities, particularly in optimizing management practices for improved carbon sequestration, soil health, and water quality in the America's heartland. Additionally, this project intertwines its research objectives with an educational agenda, which is featured by developing a computational tool to foster broad participations in large-scale computing among undergraduates. The project will also introduce a cyber-physical watershed mesocosm as an innovative trial of using the digital twin technology to enhance STEM education related to agricultural and environmental sustainability.This project will develop under the overarching hypothesis that AI-assisted integrated simulation of C, N, P, and water fluxes, compared with existing process-based modeling approach, is better able to capture high resolution environmental variability and identify best practices for achieving climate-smart agriculture and water quality goals without sacrificing crop production. The scientific innovations will be achieved through four objectives. First, a Knowledge-Guided Machine Learning (KGML)-based INSPIRE-Field model will be developed to significantly improve the prediction accuracy of field-level C, N, P, and hydrological interactions. Second, INSPIRE-Field will be coupled with Graph Neural Network (GNN)-based hydrologic surrogate models that first aggregate field water and nutrient fluxes within small watersheds (i.e., INSPIRE-Watershed), and then routing watershed outputs throughout the Upper Mississippi River Basin (i.e., INSPIRE-Basin). To reduce the uncertainty of INSPIRE, a novel representation learning method to efficiently assimilate remote and in-situ sensing data via low-dimensional embeddings will be explored. Third, a user-friendly web interface will be developed that allows stakeholders to preview outcomes of different climate- smart management practices and identify field-specific preferred management strategies based on multiobjective optimizations for C, N, P, and hydrological goals. Finally, the education and practice of computing, sensing, and machine learning among the future workforce of agroecosystem engineers, educators, and decision-makers will be enhanced through project activities. The investigator aims to lead the frontier of data analytics for sustainable agriculture by integrating remote sensing, mechanistic modeling, and artificial intelligence, with the aspiration to enable monitoring and managing every cropland, track pollutants, forecast agricultural risks, provide farmers best solutions to minimize negative environmental impacts, and ultimately help the world to achieve a sustainable food future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候智能型农业实践有望减少农业中的碳(C)排放,但其实施往往需要复杂的权衡,特别是影响氮(N)和磷(P)的管理。碳、氮和磷的综合管理,以确保气候智能型作物生产,同时保持清洁水源,受到若干知识和技术差距的阻碍。为了解决这一重大挑战,该项目旨在显著推进对密西西比河上游流域相互关联的碳、氮、磷和水循环的整体理解和建模。为了实现这一目标,将开发一个基于人工智能的框架,用于综合营养、水流和弹性农业生态系统的包裹模拟(INSPIRE),该框架可以轻松地吸收多源观测数据,并提供从田间到流域尺度的准确和快速量化。该项目的成果有望为政策制定者和农业社区提供有价值的见解,特别是在优化管理实践以改善美国中心地带的碳固存、土壤健康和水质方面。此外,该项目将其研究目标与教育议程相结合,其特点是开发一种计算工具,以促进大学生广泛参与大规模计算。该项目还将引入一个信息物理分水岭mesocosmos,作为使用数字孪生技术加强与农业和环境可持续性相关的STEM教育的创新试验。与现有的基于过程的建模方法相比,人工智能辅助的碳、氮、磷和水通量综合模拟能够更好地捕捉高分辨率的环境变化,并确定在不牺牲作物生产的情况下实现气候智慧型农业和水质目标的最佳做法,该项目将基于这一总体假设进行开发。科技创新将通过四个目标来实现。首先,将开发基于知识引导机器学习(KGML)的INSPIRE-Field模型,以显著提高现场水平C、N、P和水文相互作用的预测精度。其次,INSPIRE-Field将与基于图神经网络(GNN)的水文替代模型相结合,该模型首先汇总小流域(即INSPIRE-Watershed)内的现场水和养分通量,然后将流域输出路由到整个密西西比河上游流域(即INSPIRE-Basin)。为了降低INSPIRE的不确定性,本文将探索一种新的表征学习方法,通过低维嵌入有效地同化遥感和原位遥感数据。第三,将开发一个用户友好的网络界面,使利益相关者能够预览不同气候智能管理实践的结果,并根据碳、氮、磷和水文目标的多目标优化确定特定领域的首选管理策略。最后,在农业生态系统工程师、教育工作者和决策者的未来劳动力中,计算、传感和机器学习的教育和实践将通过项目活动得到加强。通过整合遥感、机械建模和人工智能,引领可持续农业数据分析的前沿,实现对每一块农田的监测和管理,跟踪污染物,预测农业风险,为农民提供最佳解决方案,最大限度地减少对环境的负面影响,最终帮助世界实现可持续的粮食未来。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenong Jin其他文献
Distinct driving mechanisms of non-growing season Nsub2/subO emissions call for spatial-specific mitigation strategies in the US Midwest
- DOI:
10.1016/j.agrformet.2022.109108 - 发表时间:
2022-09-15 - 期刊:
- 影响因子:5.700
- 作者:
Yufeng Yang;Licheng Liu;Wang Zhou;Kaiyu Guan;Jinyun Tang;Taegon Kim;Robert F. Grant;Bin Peng;Peng Zhu;Ziyi Li;Timothy J. Griffis;Zhenong Jin - 通讯作者:
Zhenong Jin
Climate-driven global cropland changes and consequent feedbacks
气候驱动的全球农田变化及其相应反馈
- DOI:
10.1038/s41561-025-01724-1 - 发表时间:
2025-06-20 - 期刊:
- 影响因子:16.100
- 作者:
Nanshan You;Jessica Till;David B. Lobell;Peng Zhu;Paul C. West;Hui Kong;Wei Li;Michael Sprenger;Nelson B. Villoria;Pengfei Li;Yi Yang;Zhenong Jin - 通讯作者:
Zhenong Jin
Carbon fluxes and soil carbon dynamics along a gradient of biogeomorphic succession in alpine wetlands of Tibetan Plateau
- DOI:
https://doi.org/10.1016/j.fmre.2022.09.024 - 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
Hao Wang;Lingfei Yu;Litong Chen;Zhenhua Zhang;Xuefei Li;Zhenong Jin;Naishen Liang;Changhui Peng;Jin-Sheng He - 通讯作者:
Jin-Sheng He
Uniting remote sensing, crop modelling and economics for agricultural risk management
将遥感、作物建模和经济学结合起来进行农业风险管理
- DOI:
10.1038/s43017-020-00122-y - 发表时间:
2021-01-19 - 期刊:
- 影响因子:71.500
- 作者:
Elinor Benami;Zhenong Jin;Michael R. Carter;Aniruddha Ghosh;Robert J. Hijmans;Andrew Hobbs;Benson Kenduiywo;David B. Lobell - 通讯作者:
David B. Lobell
Carbon fluxes and soil carbon dynamics along a gradient of biogeomorphic succession in alpine wetlands of Tibetan Plateau
青藏高原高寒湿地沿生物地貌演替梯度的碳通量和土壤碳动态
- DOI:
10.1016/j.fmre.2022.09.024 - 发表时间:
2022-10 - 期刊:
- 影响因子:6.2
- 作者:
Hao Wang;Lingfei Yu;Litong Chen;Zhenhua Zhang;Xuefei Li;Zhenong Jin;Naishen Liang;Changhui Peng;Jin-Sheng He - 通讯作者:
Jin-Sheng He
Zhenong Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenong Jin', 18)}}的其他基金
SitS: Spatial and Temporal Patterns of Soil N and P Cycles Quantified by a Sensor-Model Fusion Framework: Implications for Sustainable Nutrient Management
SitS:通过传感器模型融合框架量化土壤 N 和 P 循环的时空模式:对可持续养分管理的影响
- 批准号:
2034385 - 财政年份:2021
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
相似国自然基金
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
- 批准号:JCZRLH202500512
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
应用于AI芯片的先进封装TSV关键技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
SME Support
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
Preclinical validation of synthetic biomolecules to treat Breast Cancer from AI-enabled discovery of novel lncRNA therapeutic targets.
通过人工智能发现新型 lncRNA 治疗靶点,对合成生物分子治疗乳腺癌进行临床前验证。
- 批准号:
10110204 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Launchpad
COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
- 批准号:
10099265 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Collaborative R&D
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
An AI-enabled multimorbidity care service
基于人工智能的多病种护理服务
- 批准号:
10099910 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Collaborative R&D
NeuReader: Eye Tracking Enabled Explainable-AI for Empowering Resource Scarce Neurological Healthcare in Pakistan
NeuReader:眼动追踪支持可解释人工智能,为巴基斯坦资源稀缺的神经医疗保健提供支持
- 批准号:
EP/Y002865/1 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Research Grant
CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
- 批准号:
2339162 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Enhancing Multidisciplinary Team Meetings via AI-Enabled Data Assimilation
通过人工智能支持的数据同化增强多学科团队会议
- 批准号:
IM240100224 - 财政年份:2024
- 资助金额:
$ 50.96万 - 项目类别:
Mid-Career Industry Fellowships