CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives

职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制

基本信息

  • 批准号:
    2338596
  • 负责人:
  • 金额:
    $ 153.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2029-04-30
  • 项目状态:
    未结题

项目摘要

Biological collectives – groups of interacting biological individuals – are found at every level of organization: from the groups of individual cells that make up biological tissue, to the persistent social groups that characterize societies of higher animals. A hallmark of such collectives is coordination among individuals, which is critical to processes as diverse as pathogen clearance by populations of immune cells, coordinated development of a tissue, and swift but accurate decision-making by animal groups. However, coordination is not the only behavior collectives exhibit. They can also, at times, be dominated by disorder and systemic dysfunction. Examples include the hyperactive immune responses behind autoimmunity and uncontrolled misinformation cascades in animal groups. The goal of this project is to answer a question that has eluded scientists for decades: how and why do biological collectives coordinate seamlessly in some situations, yet exhibit catastrophic dysfunction in others? The project will answer this question by combining elegant experiments with mathematical and computational models that seek to identify the factors contributing to this variation. This project will contribute to the empirical and theoretical foundations for solving diverse problems ranging from the control of distributed robots and sensor networks to health interventions aimed at promoting wound healing or disrupting collective behaviors of pathogens. Knowledge of the mechanisms behind collective dysfunction may also provide insights into topics as diverse as the conservation of animal migrations, management of population and ecosystem dynamics, and the neural mechanisms that underlie functional and dysfunctional social behavior. Education and broader impact activities will focus on strengthening mathematical and AI literacy among life science students at undergraduate and graduate levels and sharing scientific knowledge beyond academia by engaging with natural history educators, science curriculum developers, and teachers.This project seeks to reveal core scientific principles that govern why biological collectives function effectively under some circumstances, yet exhibit catastrophic dysfunction under others. The project will involve a strong feedback between theory development and experimentation with schooling fish – an iconic model of biological collectives. Using novel closed-loop experimental systems and AI-driven computer vision tools, the project will study how collectives solve ecologically-relevant tasks (e.g., predator evasion, decision-making, foraging) within precisely-controlled laboratory environments. The project seeks to achieve three aims. Aim 1 focuses on how individuals cope with conflicting demands that arise when making decisions within a group. Aim 2 focuses on a critical issue that arises when individuals learn from one another: how to cope with misinformation. Aim 3 focuses on a widely-documented phenomenon known as behavioral lock-in, wherein individuals in a group over-rely on information from others to the point of becoming unresponsive to the environment. The project will advance scientific knowledge by (i) identifying general mechanisms of function and dysfunction in biological collectives, (ii) discovering mechanistic links between individual phenotype, collective phenotype, and fitness-relevant outcomes, (iii) generating quantitative hypotheses about the neural basis of collective behavior, and (iv) developing general theoretical models of collective behavior that are strongly rooted in data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物集体--相互作用的生物个体的群体--存在于组织的各个层次:从构成生物组织的单个细胞群体,到作为高等动物社会特征的持久的社会群体。这种集体的一个标志是个体之间的协调,这对于免疫细胞群体清除病原体、组织协调发育以及动物群体快速而准确的决策等多种过程至关重要。然而,协调并不是集体行为的唯一表现。有时,它们也可以由紊乱和系统功能障碍主导。例子包括动物群体中自身免疫和不受控制的错误信息级联背后的过度活跃的免疫反应。这个项目的目标是回答一个困扰科学家几十年的问题:生物群体如何以及为什么在某些情况下无缝协调,但在其他情况下却表现出灾难性的功能障碍?该项目将通过将优雅的实验与数学和计算模型相结合来回答这个问题,这些模型旨在确定导致这种变化的因素。该项目将有助于解决各种问题的经验和理论基础,从分布式机器人和传感器网络的控制到旨在促进伤口愈合或破坏病原体集体行为的健康干预。集体功能障碍背后的机制的知识也可以提供深入了解动物迁徙的保护,人口和生态系统动态的管理,以及功能和功能失调的社会行为背后的神经机制等不同的主题。教育和更广泛的影响活动将侧重于加强本科生和研究生阶段生命科学学生的数学和人工智能素养,并通过与自然历史教育者,科学课程开发者和教师的合作,在学术界之外分享科学知识。该项目旨在揭示核心科学原则,这些原则支配着为什么生物集体在某些情况下有效运作,但在其他情况下表现出灾难性的功能障碍。该项目将涉及理论发展和鱼群实验之间的强烈反馈-生物集体的标志性模型。使用新型闭环实验系统和人工智能驱动的计算机视觉工具,该项目将研究集体如何解决生态相关任务(例如,捕食者逃避,决策,觅食)在精确控制的实验室环境。该项目旨在实现三个目标。目标1关注的是个体如何科普在群体中做出决策时出现的相互冲突的需求。目标2关注的是当个体相互学习时出现的一个关键问题:如何科普错误信息。目标3关注一种被广泛记录的现象,称为行为锁定,即群体中的个体过度依赖他人的信息,以至于对环境反应迟钝。该项目将通过(i)确定生物集体中功能和功能障碍的一般机制,(ii)发现个体表型,集体表型和健身相关结果之间的机械联系,(iii)产生关于集体行为神经基础的定量假设,和(四)该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Hein其他文献

Andrew Hein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Hein', 18)}}的其他基金

Collaborative Research: Flexibility and robustness of attack and evasion: reverse-engineering the mechanisms of behavioral control
合作研究:攻击和规避的灵活性和鲁棒性:逆向工程行为控制机制
  • 批准号:
    1855956
  • 财政年份:
    2019
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant

相似海外基金

The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
  • 批准号:
    2337253
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
EA: Upgrading the Geophysics Computing Facility at Arizona State University
EA:升级亚利桑那州立大学的地球物理计算设施
  • 批准号:
    2348594
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
  • 批准号:
    2348926
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Blending Socioeconomic-Inclusive Design into Undergraduate Computing Curricula to Build a Larger Computing Workforce
HSI 实施和评估项目:将社会经济包容性设计融入本科计算机课程,以建立更大规模的计算机队伍
  • 批准号:
    2345334
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 153.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了