CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling

职业:使用计算模型表征声带血管病变生物力学

基本信息

  • 批准号:
    2338676
  • 负责人:
  • 金额:
    $ 60.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will advance fundamental understanding of the vascular lesions of human vocal folds. These lesions refer to dilated blood vessels in the fold’s tissue and are particularly common in professions with high voice usage, such as educators, public speakers, and singers. The presence of vascular lesions and their potential rupture affect the ability of the tissue to vibrate normally, which severely disrupts speech and leads to vocal fatigue. However, the underlying mechanisms of lesion growth and fatigue resulting from this condition remain uncertain. There is thus a significant need to investigate the effects of vascular lesions on the phonation process. This project will develop predictive computational models of coupled aerodynamics, hemodynamics, and solid mechanics to account for these lesions, their progression, and the corresponding voice fatigue. The resultant framework will enable improvements in biomechanical models of the human larynx, while such models are also being considered for potential use in surgical interventions, enhancement in prevention of voice disorders, and exploring issues related to voice training. Along with the development and dissemination of technical tools, the award will also support the education and training of underrepresented minorities, expansion through virtual and on-site outreach activities to inspire appreciation of phonation biomechanics within a general audience and connect with interested patients, as well as interaction with pre-collegiate students from marginalized backgrounds through an annual summer workshop. The specific goal of the research is to analyze the three-way interaction between the vascular lesion, poroviscoelastic vocal fold tissue, and glottal airflow, to illustrate the biomechanical characteristics of the tissue and quantify metrics that are hypothesized to be associated with vocal fatigue. Therefore, the research objectives of this project include: (1) developing a fully coupled multi-component fluid-poroelastic structure interaction modeling approach integrating the turbulent glottal airflow and permeable fold tissue in presence of vascular lesions to assess voice fatigue indicators, (2) creating a computational solver for modeling the lesion progression in the form of the pressure-driven crack filled with blood propagating in the poroelastic tissue to explore the significance of phonation conditions, and (3) quantifying the uncertainty in the model predictions using a Monte-Carlo type simulation approach to evaluate how various physical parameters and morphological features affect the fold’s biomechanics and lesion propagation. This project will enable the PI to advance the knowledge base in mechanics and computational simulation, establishing the foundation for her long-term career in speech biomechanics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项学院早期职业发展(Career)赠款将促进对人类声带血管病变的基本了解。这些病变是指皱褶组织中扩张的血管,在声音使用率较高的职业中尤其常见,如教育工作者、公共演说家和歌手。血管损伤的存在及其潜在的破裂会影响组织正常振动的能力,这会严重扰乱语音并导致发声疲劳。然而,这种情况导致的病变生长和疲劳的潜在机制仍然不确定。因此,有必要研究血管损伤对发声过程的影响。该项目将开发耦合空气动力学、血流动力学和固体力学的预测性计算模型,以解释这些损伤、它们的进展以及相应的声音疲劳。由此产生的框架将使人类喉部的生物力学模型得到改进,同时这些模型也被考虑用于外科干预、增强声音障碍的预防以及探索与声音训练相关的问题。在开发和传播技术工具的同时,该奖项还将支持对代表性不足的少数群体的教育和培训,通过虚拟和现场外联活动扩大范围,在普通观众中激发对发声生物力学的欣赏,并与感兴趣的患者建立联系,以及通过一年一度的暑期讲习班与来自边缘背景的预科学生互动。这项研究的具体目标是分析血管病变、声带组织和声门气流之间的三向相互作用,阐明组织的生物力学特性,并量化与发声疲劳有关的指标。因此,本项目的研究目标包括:(1)开发一种完全耦合的多组分流体-孔弹性结构相互作用的建模方法,在存在血管病变的情况下,集成湍流声门气流和可渗透皱折组织来评估声音疲劳指标;(2)创建用于模拟病变进展的计算求解器,其形式为充满血液的压力驱动的裂缝在多孔弹性组织中传播,以探索发声条件的重要性;以及(3)使用蒙特卡洛模拟方法来量化模型预测中的不确定性,以评估各种物理参数和形态特征如何影响褶皱的生物力学和病变传播。该项目将使PI能够推进力学和计算模拟方面的知识基础,为她在言语生物力学方面的长期职业生涯奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rana Zakerzadeh其他文献

Coupled Hemodynamics and Oxygen Diffusion in Abdominal Aortic Aneurysm: A Computational Sensitivity Study
腹主动脉瘤的血流动力学和氧扩散耦合:计算敏感性研究
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
一种材料建模方法,可有效响应平面软组织,从而实现高效的计算模拟。
Predicting Bioprosthetic Heart Valve Shape, Structure, and Stress with In-vivo Operation
  • DOI:
    10.1080/24748706.2019.1586207
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rana Zakerzadeh;Will Zhang;Michael S. Sacks
  • 通讯作者:
    Michael S. Sacks
Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: the Application of a Computationally-Efficient Tissue Constitutive Model
生物人工心脏瓣膜的流固耦合分析:计算高效的组织本构模型的应用
Coupled processes of tissue oxygenation and fluid flow in biphasic vocal folds
  • DOI:
    10.1016/j.ijheatmasstransfer.2024.126494
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rana Zakerzadeh;Isabella McCollum;Manoela Neves
  • 通讯作者:
    Manoela Neves

Rana Zakerzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rana Zakerzadeh', 18)}}的其他基金

ERI: A Novel Multiphysics Framework for Fluid Circulation and Oxygen Transport in Vocal Folds
ERI:声带中液体循环和氧气运输的新型多物理场框架
  • 批准号:
    2138225
  • 财政年份:
    2022
  • 资助金额:
    $ 60.38万
  • 项目类别:
    Standard Grant

相似海外基金

Characterization of immune response in vocal fold injury and tissue regeneration
声带损伤和组织再生中免疫反应的表征
  • 批准号:
    8603765
  • 财政年份:
    2012
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of immune response in vocal fold injury and tissue regeneration
声带损伤和组织再生中免疫反应的表征
  • 批准号:
    8526822
  • 财政年份:
    2012
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization and Treatment of the Scarred Vocal Fold
疤痕声带的特征和治疗
  • 批准号:
    7900774
  • 财政年份:
    2009
  • 资助金额:
    $ 60.38万
  • 项目类别:
Biomechanical Characterization of Vocal Fold Tissues
声带组织的生物力学特征
  • 批准号:
    7249424
  • 财政年份:
    2003
  • 资助金额:
    $ 60.38万
  • 项目类别:
Biomechanical characterization of vocal fold tissues
声带组织的生物力学特征
  • 批准号:
    7649270
  • 财政年份:
    2003
  • 资助金额:
    $ 60.38万
  • 项目类别:
Biomechanical characterization of vocal fold tissues
声带组织的生物力学特征
  • 批准号:
    8089317
  • 财政年份:
    2003
  • 资助金额:
    $ 60.38万
  • 项目类别:
Biomechanical Characterization of Vocal Fold Tissues
声带组织的生物力学特征
  • 批准号:
    6756625
  • 财政年份:
    2003
  • 资助金额:
    $ 60.38万
  • 项目类别:
Biomechanical characterization of vocal fold tissues
声带组织的生物力学特征
  • 批准号:
    7874649
  • 财政年份:
    2003
  • 资助金额:
    $ 60.38万
  • 项目类别:
Biomechanical Characterization of Vocal Fold Tissues
声带组织的生物力学特征
  • 批准号:
    7082178
  • 财政年份:
    2003
  • 资助金额:
    $ 60.38万
  • 项目类别:
Biomechanical characterization of vocal fold tissues
声带组织的生物力学特征
  • 批准号:
    7796219
  • 财政年份:
    2003
  • 资助金额:
    $ 60.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了