CAREER: Lower Bounds for Shallow Circuits

职业生涯:浅层电路的下限

基本信息

  • 批准号:
    2338730
  • 负责人:
  • 金额:
    $ 64.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-15 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

Circuit complexity is a fundamental area in computer science and mathematics. The applications of circuit complexity span fields as diverse as cryptography, algorithms, discrete mathematics, and software verification. The ultimate goal of this area is to prove that certain functions of interest cannot be computed efficiently. As partial progress towards this goal, a number of results have been proven for restricted models of computation, which has resulted in numerous applications to cryptography and computer science in general. This project aims to prove strong new results on the limits of efficient computation, improving and generalizing the results of the last few decades. Through the integrated research and educational activities, students will learn about a key tool for circuit complexity, matrix rigidity, in a new graduate course. The general interest of students in theoretical computer science will be raised by a new course "Gems in Theoretical Computer Science". Outreach beyond the institution will be achieved via a Coursera course sequence. Specifically, this project seeks to revive progress in three important directions in circuit complexity. First, the project will study explicit constructions of rigid matrices. Such constructions will ideally lead us to a better understanding of the power and limitations of logarithmic-depth circuits, one of the major problems in circuit lower bounds since 1977. Second, this project introduces a new approach to proving lower bounds against constant-depth circuits with counting gates, which is another major problem in circuit complexity. Finally, this project will use the techniques from circuit complexity to construct a weak version of the most fundamental cryptographic primitive, a one-way function (which, despite much effort, is not even known to exist).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电路复杂性是计算机科学和数学中的一个基本领域。电路复杂性的应用范围广泛,包括密码学、算法、离散数学和软件验证。这个领域的最终目标是证明某些感兴趣的函数不能有效地计算。作为实现这一目标的部分进展,一些结果已被证明为有限的计算模型,这导致了密码学和计算机科学的许多应用。该项目旨在证明关于有效计算极限的强有力的新结果,改进和推广过去几十年的结果。通过综合研究和教育活动,学生将在新的研究生课程中了解电路复杂性的关键工具,矩阵刚度。新开设的《理论计算机科学中的宝石》课程将提高学生对理论计算机科学的普遍兴趣。机构以外的外联将通过Coursera课程序列实现。具体而言,该项目旨在恢复电路复杂性的三个重要方向的进展。首先,这个项目将研究刚性矩阵的显式构造。这样的结构将理想地引导我们更好地理解电容深度电路的功率和限制,这是自1977年以来电路下界的主要问题之一。其次,这个项目介绍了一种新的方法来证明下界对常数深度电路计数门,这是另一个主要问题的电路复杂性。最后,该项目将使用电路复杂性的技术来构建最基本的加密原语的弱版本,即单向函数(尽管付出了很大努力,但甚至不知道存在)。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandr Golovnev其他文献

Aleksandr Golovnev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
  • 批准号:
    23K16837
  • 财政年份:
    2023
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Branching Program Lower Bounds
分支程序下界
  • 批准号:
    RGPIN-2019-06288
  • 财政年份:
    2022
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
  • 批准号:
    RGPIN-2019-05543
  • 财政年份:
    2022
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Discovery Grants Program - Individual
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
  • 批准号:
    567959-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
  • 批准号:
    558713-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Superlinear lower bounds for Boolean circuits
布尔电路的超线性下界
  • 批准号:
    545945-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Algorithm Lower Bounds via Proof Complexity
通过证明复杂性确定算法下界
  • 批准号:
    569525-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Algorithms and lower bounds for monotone dualization and tensor decomposition of constraint satisfaction hypergraphs
约束满足超图的单调对偶化和张量分解的算法和下界
  • 批准号:
    576241-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Alliance Grants
Superlinear lower bounds for Boolean circuits
布尔电路的超线性下界
  • 批准号:
    545945-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Average-Case Lower Bounds in Boolean Circuit Complexity
布尔电路复杂性的平均情况下限
  • 批准号:
    RGPIN-2016-06467
  • 财政年份:
    2021
  • 资助金额:
    $ 64.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了