CAREER: Robust and Lightweight Formal Methods for Mobile Robot System Development

职业:用于移动机器人系统开发的稳健且轻量级的形式化方法

基本信息

  • 批准号:
    2338706
  • 负责人:
  • 金额:
    $ 59.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

Mobile robots have the potential to amplify people's capabilities and reduce the amount of dull, dirty, or dangerous work that people currently do by hand across a broad set of human endeavors, especially in health care, national defense, construction, and agriculture. However, building a mobile robot is challenging and expensive because robot system developers struggle to cost-effectively build, test, and maintain reliable software. There is a gap in our knowledge of the robotic system development process that hinders building software tooling to support that process. With current tools and techniques, it is especially hard to build a prototype robot that can be upgraded into a safe, reliable, and dependable mobile robot without having to start from scratch. This project aims to create lightweight techniques and software tools that help robot system developers build safer and more capable robots while remaining economically feasible. This work leverages advances in video game development tools to make it easier to test what a mobile robot should and should not do. Building mobile robots requires expertise in several areas, including electrical, mechanical, and software engineering, and coordinating information across these areas can be challenging. In addition to building special software tools, this project puts research and teaching together so that recent advances in engineering, called model-based engineering, can prepare students to be part of an interdisciplinary future workforce that can build, operate, and maintain more reliable mobile robots.This project utilizes model checking of behavior trees and abstract type inference of physical units to automatically suggest system tests and to help ensure the absence of certain classes of software defects. Automated program analysis and testing are fundamental parts of modern software's continuous integration and deployment (CI/CD), but robot developers struggle to automate, track, and assess system testing efforts. Current techniques fall short of the demands of heterogeneous co-evolution of software/hardware systems, especially when systems are validated in the field. The project aims to develop techniques for inferring robotic system test cases from existing artifacts that robot system developers are already using. Additionally, this project seeks to create techniques for inferring and comparing groups of physical units that are commonly used together to better understand programs and discover novel patterns in how physical units are used in robotic system implementations. The expected outcomes of this project include creating a software tool that helps developers detect and track the physical units that co-occur in their software, creating a tool that helps robot system developers measure how much of a behavior tree their system has exercised, and developing test case prioritization strategies for field testing of mobile robotic systems. This research applies notions of model-based test coverage from software engineering to robot autonomy, and a goal of this research area is to lower the barriers to applying formal methods to robotic software systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动的机器人有可能增强人们的能力,减少人们目前在广泛的人类活动中手工从事的枯燥、肮脏或危险的工作,特别是在医疗保健、国防、建筑和农业方面。然而,构建一个移动的机器人是具有挑战性和昂贵的,因为机器人系统开发人员努力成本有效地构建,测试和维护可靠的软件。我们对机器人系统开发过程的了解存在差距,这阻碍了构建软件工具来支持该过程。利用当前的工具和技术,尤其难以构建一个原型机器人,可以升级为安全、可靠和可靠的移动的机器人,而不必从头开始。该项目旨在创建轻量级技术和软件工具,帮助机器人系统开发人员构建更安全,更强大的机器人,同时保持经济可行性。这项工作利用了视频游戏开发工具的进步,使测试移动的机器人应该做什么和不应该做什么变得更容易。建造移动的机器人需要多个领域的专业知识,包括电气、机械和软件工程,协调这些领域的信息可能具有挑战性。除了构建特殊的软件工具外,该项目还将研究和教学结合在一起,以便工程领域的最新进展(称为基于模型的工程)可以让学生做好准备,成为跨学科未来劳动力的一部分,这些劳动力可以构建、操作、并维护更可靠的移动的机器人。该项目利用行为树的模型检查和物理单元的抽象类型推理来自动建议系统测试,并帮助确保不存在某些类别的软件缺陷。自动化程序分析和测试是现代软件持续集成和部署(CI/CD)的基本组成部分,但机器人开发人员很难自动化,跟踪和评估系统测试工作。当前的技术达不到软件/硬件系统的异构协同进化的需求,特别是当系统在现场进行验证时。该项目旨在开发从机器人系统开发人员已经使用的现有工件中推断机器人系统测试用例的技术。此外,该项目旨在创建用于推断和比较通常一起使用的物理单元组的技术,以更好地理解程序并发现物理单元如何用于机器人系统实现的新模式。该项目的预期成果包括创建一个软件工具,帮助开发人员检测和跟踪在其软件中共同出现的物理单元,创建一个工具,帮助机器人系统开发人员测量他们的系统已经执行了多少行为树,并为移动的机器人系统的现场测试开发测试用例优先级策略。该研究将基于模型的测试覆盖率的概念应用于软件工程和机器人自主性,该研究领域的目标是降低将正式方法应用于机器人软件系统的障碍。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John-Paul Ore其他文献

Analyzing the dependability of Large Language Models for code clone generation
  • DOI:
    10.1016/j.jss.2025.112548
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Azeeza Eagal;Kathryn T. Stolee;John-Paul Ore
  • 通讯作者:
    John-Paul Ore

John-Paul Ore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Fellowship
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Continuing Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Standard Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 59.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了