CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces

职业:运动细菌在结构化液晶界面的界面行为

基本信息

  • 批准号:
    2338880
  • 负责人:
  • 金额:
    $ 60.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Non-technical abstractUnderstanding how bacteria interact with complex interfaces is crucial for unraveling the mysteries of microorganism life. These interfaces, where fluids meet, play a pivotal role in bacterial adaptation, nutrient gathering, and gas exchange, offering valuable insights into microorganisms' ability to thrive in diverse conditions. Unfortunately, the interactions of bacteria with these domains are poorly understood due to the technical challenges scientists face in studying complex materials. This research aims to advance our knowledge of how interfaces influence the movement of living microorganisms. The research team utilizes ordered materials called liquid crystals, characterized by properties between liquids and solids, as a model system to study how microorganisms interact with intricate environments. Leveraging the tunable features of liquid crystals, the team explores ways to engineer the interface properties, enhancing control over bacterial flows and structural states. This work carries promising technological prospects as it opens avenues for the development of new functional systems applicable across fields including biosensing, bioremediation, and disease treatment. In addition to the technological impacts, the project is integrated with educational and outreach plans that incorporate examples of soft materials to improve the teaching of physics to life science students, create opportunities for undergraduate students from underrepresented groups to experience research at an early stage, and make science enjoyable to the general public.Technical abstractActive materials are structured systems of interacting elements that propel motion and generate flows. The aspiration to regulate these flows has driven research efforts to develop functional systems applicable across various domains. This project addresses the challenge of establishing effective mechanisms to control flows in active materials. Mainly, it delves into exploring liquid crystal interfaces to govern the dynamic assembly of living active materials. The goal of this research is to deepen the understanding of how ordered materials influence the fundamental behaviors of active materials and how interfaces can be successfully designed to regulate flows within active entities. Self-propelled bacteria are utilized as a model system to investigate the impact of interfacial anisotropy and topological defects on the dynamics of active materials. Employing diverse microfabrication techniques, including lithography, 3D printing, and microfluidics, the team undertakes the confinement of liquid crystals and the engineering of their surface defects to direct the collective behavior of bacteria. The insights gained from this project contribute to the development of transformative applications with practical implications in diverse fields, especially those requiring the transformation of chaotic dynamics into useful work. The project also promotes educational opportunities by integrating education and research through the creation of opportunities for undergraduate students from nontraditional backgrounds to explore projects related to soft materials at an early stage, to prepare them for higher education and careers in STEM. In addition, the principal investigator is developing a distinct approach to improve the teaching of physics to life science students by implementing topics related to soft matter and elucidating the strong connections between physical concepts and biological systems. The insights and knowledge gained from understanding how active materials behave at complex fluid interfaces are also disseminated to general audiences through training modules and educational workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解细菌如何与复杂界面相互作用对于揭开微生物生命的奥秘至关重要。这些界面是流体相遇的地方,在细菌适应、营养物质收集和气体交换中发挥着关键作用,为微生物在不同条件下茁壮成长的能力提供了有价值的见解。不幸的是,由于科学家在研究复杂材料时面临的技术挑战,细菌与这些领域的相互作用知之甚少。这项研究旨在推进我们对界面如何影响活微生物运动的认识。该研究小组利用称为液晶的有序材料,其特征在于液体和固体之间的性质,作为模型系统来研究微生物如何与复杂的环境相互作用。利用液晶的可调特性,该团队探索了设计界面特性的方法,增强了对细菌流动和结构状态的控制。这项工作具有广阔的技术前景,因为它为开发适用于生物传感、生物修复和疾病治疗等领域的新功能系统开辟了道路。除了技术影响外,该项目还与教育和推广计划相结合,这些计划包括软材料的例子,以改善生命科学学生的物理教学,为代表性不足的群体的本科生创造机会,在早期阶段体验研究,技术摘要活性材料是由相互作用的元素组成的结构系统,这些元素推动运动and generate生成flows流.监管这些流动的愿望推动了研究工作,以开发适用于各个领域的功能系统。该项目旨在应对建立有效机制以控制活性材料流动的挑战。主要是,它深入探索液晶界面,以管理活的活性材料的动态组装。本研究的目标是加深对有序材料如何影响活性材料的基本行为以及如何成功设计界面以调节活性实体内的流动的理解。利用自推进细菌作为模型系统,研究了界面各向异性和拓扑缺陷对活性材料动力学的影响。该团队采用各种微加工技术,包括光刻、3D打印和微流体技术,对液晶进行限制,并对其表面缺陷进行工程设计,以指导细菌的集体行为。从该项目中获得的见解有助于开发具有实际意义的变革性应用程序,特别是那些需要将混沌动力学转化为有用工作的应用程序。该项目还通过为来自非传统背景的本科生创造机会,在早期阶段探索与软材料相关的项目,将教育和研究相结合,促进教育机会,为他们接受高等教育和从事STEM职业做好准备。此外,首席研究员正在开发一种独特的方法,通过实施与软物质相关的主题并阐明物理概念与生物系统之间的紧密联系,来改善生命科学学生的物理教学。通过了解活性材料在复杂流体界面上的行为所获得的见解和知识也通过培训模块和教育研讨会传播给普通受众。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohamed Amine Gharbi其他文献

Giant cell tumor of the cervical spine: A very uncommon cause for cervical spine compression
  • DOI:
    10.1016/j.radcr.2024.08.123
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ghassen Gader;Mohamed Amine Gharbi;Wiem Mansour;Mohamed Badri;Ahmed Harbaoui;Ihsèn Zammel
  • 通讯作者:
    Ihsèn Zammel
Desmoid-type fibromatosis in an uncommon location: A case report of shoulder involvement misdiagnosed as rhabdomyosarcoma
  • DOI:
    10.1016/j.ijscr.2024.110508
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Faten Limaiem;Mohamed Amine Gharbi;Nadia Boujelbene;Ramy Triki;Khaled Ben Romdhane;Ramzi Bouzidi
  • 通讯作者:
    Ramzi Bouzidi
Neglected knee swelling: A case report of massive synovial chondromatosis
  • DOI:
    10.1016/j.ijscr.2024.110636
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Faten Limaiem;Mohamed Amine Gharbi;Ramzi Bouzidi
  • 通讯作者:
    Ramzi Bouzidi

Mohamed Amine Gharbi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Synthetic mucins with tunable structures and programmable interfacial behavior
合作研究:具有可调结构和可编程界面行为的合成粘蛋白
  • 批准号:
    2212162
  • 财政年份:
    2022
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Synthetic mucins with tunable structures and programmable interfacial behavior
合作研究:具有可调结构和可编程界面行为的合成粘蛋白
  • 批准号:
    2212139
  • 财政年份:
    2022
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
Probing the Interfacial behavior of nanostructured electrocatalysts for environmentally relevant catalytic systems
探索环境相关催化系统纳米结构电催化剂的界面行为
  • 批准号:
    RGPIN-2018-06602
  • 财政年份:
    2022
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Discovery Grants Program - Individual
Probing the Interfacial behavior of nanostructured electrocatalysts for environmentally relevant catalytic systems
探索环境相关催化系统纳米结构电催化剂的界面行为
  • 批准号:
    RGPIN-2018-06602
  • 财政年份:
    2021
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Discovery Grants Program - Individual
Probing the Interfacial behavior of nanostructured electrocatalysts for environmentally relevant catalytic systems
探索环境相关催化系统纳米结构电催化剂的界面行为
  • 批准号:
    RGPIN-2018-06602
  • 财政年份:
    2020
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Discovery Grants Program - Individual
Probing the Interfacial behavior of nanostructured electrocatalysts for environmentally relevant catalytic systems
探索环境相关催化系统纳米结构电催化剂的界面行为
  • 批准号:
    RGPIN-2018-06602
  • 财政年份:
    2019
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative Analysis of Interfacial Charge Transport Mechanisms and Molecular Orientation Behavior of Organic Devices by Nonlinear Spectroscopy.
通过非线性光谱定量分析有机器件的界面电荷传输机制和分子取向行为。
  • 批准号:
    19H02793
  • 财政年份:
    2019
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Effects of PEG-Thiol on the Interfacial Behavior of Gold Nanoparticle Langmuir Films
PEG-硫醇对金纳米粒子朗缪尔薄膜界面行为的影响
  • 批准号:
    524001-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 60.15万
  • 项目类别:
    University Undergraduate Student Research Awards
Probing the Interfacial behavior of nanostructured electrocatalysts for environmentally relevant catalytic systems
探索环境相关催化系统纳米结构电催化剂的界面行为
  • 批准号:
    RGPIN-2018-06602
  • 财政年份:
    2018
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Discovery Grants Program - Individual
Mesoscopic analysis of dynamic interfacial behavior of dense nanofluids
致密纳米流体动态界面行为的细观分析
  • 批准号:
    16H04548
  • 财政年份:
    2016
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了