CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery

职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料

基本信息

  • 批准号:
    2339254
  • 负责人:
  • 金额:
    $ 61.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYBuilding 3D structures outside the body that mimic biological tissue is critical for studying how cells interact with each other in their native environment, and for understanding how these processes change in disease. Utilizing printable bioink materials combined with cells, 3D bioprinting offers an unprecedented ability to build cell-containing 3D structures that replicate the complex multicellular patterns and geometries of native tissue. A key approach to studying these cell interactions is by introducing new genetic material to cells to change their behavior in a defined way and controlling when and where the cells receive these genetic instructions. However, it is challenging to achieve this control in 3D printed structures using current approaches, as the 3D construct presents a physical barrier to gene delivery. Addressing this challenge, this project will develop a new 3D printable bioink that allows deep-penetrating ultrasound to trigger the delivery of genetic material to cells. The ultrasound waves can be focused to small spots within the 3D bioprinted structure to create desired patterns of gene delivery by activating embedded ultrasound-responsive particles. This project will produce new fundamental knowledge about how embedded ultrasound-responsive particles affect the material properties of the printable bioinks and will determine how bioink material properties affect ultrasound-induced particle activation. These novel materials will allow researchers to study new aspects of cell behavior in tissue-relevant 3D geometries. This project will also enable new materials for use in regenerative medicine applications where remote genetic manipulation of cells at specific times after implantation can instruct cellular communication and improve healing of damaged tissue. This project will develop educational activities that engage underrepresented students at multiple levels in 3D bioprinting and responsive biomaterials research, providing mentorship opportunities and fostering retention in STEM. Broader reach of this work will also be facilitated through development of interactive workshops to introduce 3D printing research to middle and high school students, as well as accessible 3D biofabrication modules to promote public interest in bioprinting and responsive biomaterials.TECHNICAL SUMMARY3D bioprinting is a major advance allowing direct formation of cell scaffold structures that closely mimic the multi-component architecture of native tissues. However, it is a challenge to apply the critically important tool of genetic manipulation to influence cell behaviors within 3D scaffolds with temporal and spatial control because scaffolds hinder diffusion of traditional transfection vectors. Overcoming diffusional barriers to enable genetic control over subsets of cells within scaffolds is essential for developing new biomaterials to replicate and perturb genetic expression patterns found in native tissue. This project focuses on fundamental development and characterization of a new class of biomaterials that combine a novel ultrasound-responsive 3D scaffold cell culture platform with 3D-printable bioinks to enable remote spatiotemporal control over genetic manipulation of embedded cells. The three main objectives are to: (1) understand how embedded ultrasound-responsive particles affect scaffold material properties, (2) determine how bioink material properties affect ultrasound-induced particle cavitation, and (3) characterize ultrasound-patterned DNA delivery to cells within multicellular 3D-bioprinted scaffolds. Multi-level integrated education activities will create research and mentoring opportunities for underrepresented undergraduate and graduate students in new stimuli-responsive bioink research, supporting student engagement and retention. Outreach and education efforts will also include interactive activities to introduce 3D printing technology to students at the middle and high school level, and dissemination of accessible 3D biofabrication education modules as a resource to increase public knowledge and interest in biomaterials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在体外构建模拟生物组织的3D结构对于研究细胞在其天然环境中如何相互作用以及了解这些过程在疾病中如何变化至关重要。利用可打印的生物墨水材料与细胞相结合,3D生物打印提供了前所未有的能力来构建包含细胞的3D结构,这些结构复制了天然组织的复杂多细胞模式和几何形状。研究这些细胞相互作用的一个关键方法是将新的遗传物质引入细胞,以确定的方式改变它们的行为,并控制细胞何时何地接收这些遗传指令。然而,使用当前的方法在3D打印结构中实现这种控制是具有挑战性的,因为3D构建体对基因递送存在物理障碍。为了应对这一挑战,该项目将开发一种新的3D打印生物墨水,允许深穿透超声触发遗传物质向细胞的传递。超声波可以聚焦到3D生物打印结构内的小斑点,通过激活嵌入的超声响应颗粒来创建所需的基因递送模式。该项目将产生关于嵌入的超声响应颗粒如何影响可打印生物墨水的材料特性的新的基础知识,并将确定生物墨水材料特性如何影响超声诱导的颗粒活化。这些新材料将使研究人员能够在组织相关的3D几何形状中研究细胞行为的新方面。该项目还将使新材料能够用于再生医学应用,其中在植入后的特定时间对细胞进行远程遗传操作可以指导细胞通信并改善受损组织的愈合。该项目将开发教育活动,让代表性不足的学生在多个层面参与3D生物打印和响应式生物材料研究,提供导师机会并促进STEM的保留。通过发展互动研讨会,向中学生介绍3D打印研究,以及开发可访问的3D生物制造模块,促进公众对生物打印和响应性生物材料的兴趣,也将促进这项工作的更广泛应用。技术概述3D生物打印是一项重大进步,可以直接形成细胞支架结构,紧密模仿天然组织的多组分结构。然而,这是一个挑战,应用基因操作的至关重要的工具,以影响细胞行为的三维支架内的时间和空间控制,因为支架阻碍传统的转染载体的扩散。克服扩散障碍,使基因控制的细胞亚群的支架内是必不可少的开发新的生物材料复制和干扰天然组织中发现的基因表达模式。该项目的重点是一类新的生物材料的基本开发和表征,该生物材料将新型超声响应3D支架细胞培养平台与3D可打印生物墨水相结合,以实现对嵌入细胞遗传操作的远程时空控制。三个主要目标是:(1)了解嵌入的超声响应颗粒如何影响支架材料特性,(2)确定生物墨水材料特性如何影响超声诱导的颗粒空化,以及(3)表征超声模式的DNA递送到多细胞3D生物打印支架内的细胞。多层次的综合教育活动将在新的刺激响应生物墨水研究中为代表性不足的本科生和研究生创造研究和指导机会,支持学生参与和保留。推广和教育工作还将包括互动活动,向初中和高中学生介绍3D打印技术,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carolyn Ibsen其他文献

Carolyn Ibsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Developing a quantitative ultrasound breast scanner for identifying early response of breast cancer to chemotherapy
开发定量超声乳腺扫描仪来识别乳腺癌对化疗的早期反应
  • 批准号:
    10504175
  • 财政年份:
    2022
  • 资助金额:
    $ 61.55万
  • 项目类别:
Developing a quantitative ultrasound breast scanner for identifying early response of breast cancer to chemotherapy
开发定量超声乳腺扫描仪来识别乳腺癌对化疗的早期反应
  • 批准号:
    10686414
  • 财政年份:
    2022
  • 资助金额:
    $ 61.55万
  • 项目类别:
Developing a Next Generation Mouse Model of Urogenital Schistosomiasis Through Ultrasound-Guided Percutaneous Bladder Wall Injection of Schistosoma haematobium Eggs
通过超声引导经皮膀胱壁注射埃及血吸虫卵开发下一代泌尿生殖血吸虫病小鼠模型
  • 批准号:
    10041747
  • 财政年份:
    2020
  • 资助金额:
    $ 61.55万
  • 项目类别:
Developing sensitive optical sensors of ultrasound for biomedical applications
开发用于生物医学应用的敏感超声波光学传感器
  • 批准号:
    550688-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 61.55万
  • 项目类别:
    University Undergraduate Student Research Awards
Developing a Next Generation Mouse Model of Urogenital Schistosomiasis Through Ultrasound-Guided Percutaneous Bladder Wall Injection of Schistosoma haematobium Eggs
通过超声引导经皮膀胱壁注射埃及血吸虫卵开发下一代泌尿生殖血吸虫病小鼠模型
  • 批准号:
    10171777
  • 财政年份:
    2020
  • 资助金额:
    $ 61.55万
  • 项目类别:
Developing Novel Physical Therapy for Enhancing Peripheral Nerve Regeneration by Low-Intensity Pulsed Ultrasound
开发通过低强度脉冲超声增强周围神经再生的新型物理疗法
  • 批准号:
    17K13052
  • 财政年份:
    2017
  • 资助金额:
    $ 61.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Developing catheter based ultrasound for treating chronic total occlusions
开发基于导管的超声治疗慢性完全闭塞
  • 批准号:
    497695-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 61.55万
  • 项目类别:
    University Undergraduate Student Research Awards
Developing methods of assessment and biofeedback of tongue movement with a portable ultrasound diagnostic device
使用便携式超声诊断设备开发舌头运动的评估和生物反馈方法
  • 批准号:
    16K11895
  • 财政年份:
    2016
  • 资助金额:
    $ 61.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Developing a new platform technology for 3D ultrasound imaging
SBIR 第二阶段:开发 3D 超声成像新平台技术
  • 批准号:
    1533978
  • 财政年份:
    2015
  • 资助金额:
    $ 61.55万
  • 项目类别:
    Standard Grant
Developing low-intensity pulsed ultrasound circuits to enhance cellulosic bioethanol yield for renewable energy
开发低强度脉冲超声电路以提高可再生能源的纤维素生物乙醇产量
  • 批准号:
    327276-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 61.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了