CAREER: Monostructural Topological Spin-Insulatronics

职业:单结构拓扑自旋绝缘电子学

基本信息

  • 批准号:
    2339315
  • 负责人:
  • 金额:
    $ 61.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARY This CAREER award supports integrated research and education endeavors to discover and understand new physics enabling electronic devices to operate efficiently without incurring undesirable waste heat. Miniaturization of electronic devices is essential to the advancement of future technology. Down to the nanometer scale, however, further progress is hurdled by the low control efficiency, soaring heat, and complexity of integration. Recent discoveries of magnetic topological materials bring about exciting opportunities to fundamentally address these problems, thanks to their unique physical characteristics. This project conducts a timely investigation in response to the pressing need for low-dissipation devices by inquiring into the microscopic physics of the emerging classes of topological materials, intending to lay a solid physical foundation for non-dissipative devices featuring a (theoretical) 100% power conversion and vanishing heat production. In addition, the project explores a transformative alternation of the conventional spin-based electronics, such that a single material unit on its own can function as both driver and oscillator, hence obviating the need to develop complex heterostructures and interfaces. These compelling properties, bolstered by the intriguing physics behind the intertwined electronic and magnetic structures, hold potential in creating disruptive technology and could even revolutionize the basic architecture of modern computers.The research project is complemented by educational activities to train both graduate and undergraduate students for theoretical research. The PI will organize a special seminar named “Condensed Matters Matter” targeting undergraduate students of diverse backgrounds to nurture their curiosity in condensed matter physics with an accessible level of introduction and an enhanced exposure to the latest discoveries. The PI will also develop a new undergraduate course on MATHEMATICA programming for solving real problems in physical sciences and engineering. TECHNICAL SUMMARY This CAREER award funds theoretical research and educational activities to achieve non-dissipative spintronics using a single magnetic material which can drive itself without relying on foreign components. Traditional paradigms of electrical control of magnetism involve engineered heterostructures in which magnetic dynamics is controlled by spin angular momenta generated from charge currents outside of the magnetic material. Such a setup is extremely inefficient in serving its purpose because of the inhibited interfacial spin transfer and the inevitable Joule heating effect. The PI and his team pursue a new paradigm of spintronics based on monostructural systems (i.e., single material platforms) free of interfaces and devoid of Joule heating from a theoretical perspective. The project strives to unravel the microscopic origins of the intricate interplay between topological electrons and magnetic dynamics enabled by the spin-orbit interactions, among other relevant degrees of freedom, in intrinsic magnetic topological insulators and other exotic phases of matter. The project seeks to quantify the non-trivial spin-orbit torques driven by pure voltages, the dynamical consequences that follow, and the underlying symmetry principles. Besides establishing an in-depth understanding of the unprecedented physical behavior of monostructural spintronics, the project also seeks to make experimentally verifiable predictions and develop a theoretical toolbox for proper experimental designs. This award also supports educational activities which include mentoring graduate students and providing unique opportunities for undergraduate students to participate in real research at an early stage. In addition, the PI will organize a special seminar named “Condensed Matters Matter” targeting undergraduate students of diverse backgrounds to nurture their curiosity in condensed matter physics with an accessible level of introduction and an enhanced exposure to the latest discoveries. The PI will also develop a new course at senior undergraduate level to teach problem-solving skills in physical sciences and engineering using MATHEMATICA software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持综合研究和教育工作,以发现和理解新的物理学,使电子设备能够有效地运行,而不会产生不必要的废热。电子设备的小型化对未来技术的进步至关重要。然而,在纳米尺度下,控制效率低、热量飙升和集成复杂性阻碍了进一步的进展。最近发现的磁性拓扑材料带来了令人兴奋的机会,从根本上解决这些问题,由于其独特的物理特性。该项目通过探讨新兴拓扑材料的微观物理学,及时调查了对低耗散器件的迫切需求,旨在为具有(理论)100%功率转换和消失产热的非耗散器件奠定坚实的物理基础。此外,该项目还探索了传统自旋电子学的变革性变化,使得单个材料单元本身可以同时用作驱动器和振荡器,从而避免了开发复杂异质结构和接口的需要。这些令人信服的特性,以及电子和磁性结构背后的有趣物理学支持,具有创造颠覆性技术的潜力,甚至可能彻底改变现代计算机的基本架构。该研究项目辅以教育活动,培养研究生和本科生进行理论研究。PI将举办一个名为“凝聚态物质”的特别研讨会,针对不同背景的本科生,通过简单的介绍和对最新发现的深入了解,培养他们对凝聚态物理的好奇心。PI还将开发一个新的本科生课程Mathematica编程解决物理科学和工程中的真实的问题。该职业奖资助理论研究和教育活动,以实现非耗散自旋电子学,使用单一的磁性材料,可以驱动自己,而不依赖于外国组件。磁性的电控制的传统范例涉及工程异质结构,其中磁动力学由磁性材料外部的电荷电流产生的自旋角动量控制。由于界面自旋转移受到抑制和不可避免的焦耳热效应,这种设置在服务于其目的方面效率极低。PI和他的团队追求一种基于单结构系统的自旋电子学新范式(即,单一材料平台),从理论角度看,没有界面和焦耳热。该项目致力于揭示拓扑电子和磁动力学之间复杂相互作用的微观起源,这些相互作用是由自旋轨道相互作用以及其他相关自由度在内在磁性拓扑绝缘体和其他奇异物质相中实现的。该项目旨在量化由纯电压驱动的非平凡自旋轨道扭矩,随之而来的动力学后果以及潜在的对称性原理。除了深入了解单结构自旋电子学前所未有的物理行为外,该项目还寻求进行实验验证的预测,并为适当的实验设计开发理论工具箱。该奖项还支持教育活动,包括指导研究生,并为本科生提供独特的机会,在早期阶段参与真实的研究。此外,研究所将为不同背景的本科生举办一个名为“凝聚态物质物质”的专题研讨会,以培养他们对凝聚态物理学的好奇心,并提供可理解的介绍和加强对最新发现的接触。PI还将开发一门新的高年级本科生课程,教授使用MATHEMATICA软件解决物理科学和工程问题的技能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ran Cheng其他文献

Polymer-based 3D Printed Millimeter-wave Components for Spacecraft Payloads
用于航天器有效载荷的基于聚合物的 3D 打印毫米波组件
Remedial Field-Oriented Control of Five-Phase Fault-Tolerant Permanent-Magnet Motor by Using Reduced-Order Transformation Matrices
利用降阶变换矩阵对五相容错永磁电机进行补救磁场定向控制
High performance Ge ultra-shallow junctions fabricated by a novel formation technique featuring spin-on dopant and laser annealing for sub-10 nm technology applications
采用新型形成技术制造的高性能 Ge 超浅结,采用旋涂掺杂剂和激光退火,适用于 10 nm 以下技术应用
  • DOI:
    10.1016/j.mee.2016.10.002
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Junkang Li;Ran Cheng;Chang Liu;Pengzhan Zhang;Jiwu Lu;Kunji Chen;Rui Zhang;Yi Zhao
  • 通讯作者:
    Yi Zhao
Neural-Network-Based Energy Calculation for Multivoltage Threshold Sampling
基于神经网络的多电压阈值采样能量计算
Experiment analysis and computational optimization of the Atkinson cycle gasoline engine through NSGA Ⅱ algorithm using machine learning
利用机器学习通过NSGAⅨ算法对阿特金森循环汽油机进行实验分析和计算优化
  • DOI:
    10.1016/j.enconman.2021.113871
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Ji Tong;Yangyang Li;Jingping Liu;Ran Cheng;Jinhuan Guan;Shuqian Wang;Shujing Liu;Song Hu;Tao Guo
  • 通讯作者:
    Tao Guo

Ran Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了