CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays

职业:利用纳米磁性阵列实现节能的仿生磁力处理

基本信息

  • 批准号:
    2339475
  • 负责人:
  • 金额:
    $ 79.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2028-12-31
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by the Condensed Matter Physics program of the Division of Materials Research and Established Program to Stimulate Competitive Research (EPSCoR).Nontechnical description:The surging development of artificial intelligence (AI) enables the creation of powerful tools and applications that were unimaginable just a few years ago. However, as AI and machine learning rapidly grow, the associated energy costs and greenhouse emissions are exploding. This massively unsustainable trend threatens to prevent society from achieving a net-zero future. Hence, a paradigm shift for low-power computing and AI processing is urgently needed. This project contributes to tackling this historic challenge by delivering foundational knowledge and technology concerning the fundamental excitations in magnetic nanostructures to create a transformative computing scheme taking inspiration from the brain. Current computing architectures rely on a constant shuttling of data between separate memory and processor, which is highly inefficient. Furthermore, current computing platforms are based on the flow of electronic charges, leading to dissipation in the form of Joule heating. To circumvent these problems, the research team aims to harness the dynamics in networks of interacting nanomagnets for bio-inspired processing by A) alleviating the processor-memory information transfer bottleneck and B) enabling the transport and processing of data based on waves rather than moving charges. The educational outreach component of this project fosters increased public participation in scientific research. The educational goals are designed to engage multiple levels of learning in wave physics: 1) a new course is developed for lifelong learners and 2) training programs are developed for schoolteachers working with a diverse student population by creating an accessible wave demonstration. Technical description:Spin waves, and their quanta - magnons - are the fundamental collective excitations of a magnetic system. Magnons can transport and process information without moving charges, and hence, magnonic devices can be less dissipative than their electronic counterparts. Nanomagnetic arrays are similar to neural networks, providing memory and computing abilities in the same unit: they can retain information stored in their magnetization orientation and process that information by magnonic excitations. This project explores several paths in nanomagnonics by determining the magnon properties in lithographically defined arrays of interacting nanomagnets, where information is passed between nanomagnetic ‘neurons’ via magnon-magnon coupling acting as ‘synapses’. Therefore, advances are needed to understand dynamic mode coupling in networks of nanomagnets. This project addresses critical knowledge gaps in the fundamental understanding of strongly interacting magnetic networks. The four specific aims are 1) controlling magnons in two-dimensional arrays of nanomagnets, 2) manipulating magnon-magnon interactions, and 3) understand nonlinear dynamics in magnetic nanostructures to 4) experimentally realize the next-generation of neuromorphic magnonic computing concepts. The nanomagnetic networks are fabricated by electron-beam lithography, electron-beam evaporation, and lift-off and studied by optical, electrical, and microwave methods. The experimental investigations are supported by micromagnetic modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料研究部的凝聚态物理项目和刺激竞争性研究的既定计划(EPSCoR)共同资助。非技术描述:人工智能(AI)的蓬勃发展使强大的工具和应用程序的创建成为可能,这在几年前是不可想象的。然而,随着人工智能和机器学习的快速发展,相关的能源成本和温室气体排放正在爆炸式增长。这种不可持续的趋势可能会阻止社会实现净零未来。因此,迫切需要低功耗计算和人工智能处理的范式转变。该项目通过提供有关磁性纳米结构中基本激发的基础知识和技术来应对这一历史性挑战,以创建一个从大脑中获得灵感的变革性计算方案。当前的计算架构依赖于数据在单独的内存和处理器之间不断穿梭,这是非常低效的。此外,当前的计算平台基于电子电荷的流动,导致以焦耳热的形式耗散。为了规避这些问题,研究小组的目标是利用相互作用的纳米磁体网络中的动态进行生物启发处理,方法是:A)缓解处理器-存储器信息传输瓶颈; B)基于波而不是移动电荷来传输和处理数据。该项目的教育推广部分促进公众更多地参与科学研究。教育目标旨在参与波物理学的多层次学习:1)为终身学习者开发新课程,2)通过创建可访问的波演示,为与不同学生群体合作的学校教师开发培训计划。技术描述:自旋波和它们的量子-磁振子-是磁性系统的基本集体激发。磁振子可以在不移动电荷的情况下传输和处理信息,因此,磁振子设备的耗散性可能比电子设备小。纳米磁性阵列类似于神经网络,在同一个单元中提供记忆和计算能力:它们可以保留存储在其磁化方向上的信息,并通过磁振子激发来处理这些信息。该项目通过确定相互作用的纳米磁体的光刻定义阵列中的磁振子属性,探索了纳米磁学中的几条路径,其中信息通过磁振子-磁振子耦合在纳米磁性“神经元”之间传递,充当“突触”。因此,需要进一步了解纳米磁体网络中的动态模式耦合。该项目解决了强相互作用磁网络的基本理解的关键知识差距。四个具体目标是:1)控制纳米磁体二维阵列中的磁振子,2)操纵磁振子-磁振子相互作用,3)理解磁性纳米结构中的非线性动力学,4)实验实现下一代神经形态磁振子计算概念。纳米磁性网络的制造,电子束光刻,电子束蒸发,和剥离和研究,通过光学,电学和微波方法。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Jungfleisch其他文献

Matthias Jungfleisch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Jungfleisch', 18)}}的其他基金

RII Track-4: Terahertz Spintronics
RII Track-4:太赫兹自旋电子学
  • 批准号:
    1833000
  • 财政年份:
    2018
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

Resilient design of energy pile foundations toward zero carbon buildings
面向零碳建筑的能源桩基础弹性设计
  • 批准号:
    DP230102304
  • 财政年份:
    2023
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Discovery Projects
Improvement of Low-Energy Event Selection at a Water Cherenkov Detector toward Proton Decay Searches
水切伦科夫探测器低能事件选择的改进以实现质子衰变搜索
  • 批准号:
    23K03434
  • 财政年份:
    2023
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward Repurposing a Commonly-Used Medication for the Treatment of Pediatric Severe Obesity
重新利用治疗儿童严重肥胖症的常用药物
  • 批准号:
    10711874
  • 财政年份:
    2023
  • 资助金额:
    $ 79.88万
  • 项目类别:
Toward high spatiotemporal resolution models of single molecules for in vivo applications
用于体内应用的单分子高时空分辨率模型
  • 批准号:
    10552322
  • 财政年份:
    2023
  • 资助金额:
    $ 79.88万
  • 项目类别:
Integrated analysis of energy mix and resource adequacy policy toward decarbonization
能源结构和资源充足性脱碳政策综合分析
  • 批准号:
    23H01640
  • 财政年份:
    2023
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Developing Advanced Magnesium Electrolytes Toward Low Cost, High Energy Density Mg Batteries
合作研究:开发先进镁电解质以实现低成本、高能量密度镁电池
  • 批准号:
    2211825
  • 财政年份:
    2022
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Standard Grant
Toward an integrated theory of the relationship between chemotrophic microbial communities and free energy
走向化能微生物群落与自由能之间关系的综合理论
  • 批准号:
    22K06390
  • 财政年份:
    2022
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the hydrodynamics in newly-arised innovative floating systems toward highly-efficient ocean renewable energy conversion
阐明新出现的创新浮动系统中的流体动力学,以实现高效的海洋可再生能源转换
  • 批准号:
    22K14430
  • 财政年份:
    2022
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Low Cost and High-Performance Sodium-ion Batteries for Grid Energy Storage toward Reducing Greenhouse Gas Emission
低成本高性能钠离子电池用于电网储能以减少温室气体排放
  • 批准号:
    576927-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Alliance Grants
Collaborative Research: Developing Advanced Magnesium Electrolytes Toward Low Cost, High Energy Density Mg Batteries
合作研究:开发先进镁电解质以实现低成本、高能量密度镁电池
  • 批准号:
    2211824
  • 财政年份:
    2022
  • 资助金额:
    $ 79.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了