CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
基本信息
- 批准号:2339487
- 负责人:
- 金额:$ 68.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Optical atomic clocks are mankind’s most accurate metrological tool with fractional instabilities at the 10^-18 level. This corresponds to losing less than one second in the entire age of the universe. Such accuracy not only enables incredible timing precision, but also facilitates the study of phenomena that may affect the passage of time such as gravity, dark matter, and the variation of fundamental constants. Research on future generations of optical atomic clocks is focused on further improving accuracy and/or allowing a comparable accuracy to be achieved in deployed systems operating in real-world environments. This work will draw from the toolbox of quantum information science to improve the resource efficiency of optical clocks by using on-the-fly measures such as those found in quantum error correction and by using programmable entanglement generation. This research will provide undergraduate and graduate students with hands-on experience in precision metrology and atomic quantum science. This experience, along with curricular innovations and outreach to the broader community, will help promote the growth and diversity of the American quantum workforce.The operating principle of optical clocks involves comparing a sub-Hz-linewidth laser oscillator to an ultra-narrow atomic transition to correct its frequency fluctuation and drift. The main limitations on clock performance stem from (1) the baseline stability of the laser oscillator, and (2) the atomic resources needed to correct laser frequency fluctuations whose accuracy is hampered by the projective nature of quantum measurements. This work seeks to address both issues by enabling independent operation of two atomic array optical clocks within the same apparatus and by using an optical cavity to engineer spin squeezing that mitigates projection noise. Specifically, by levering the rich atomic structure of ytterbium-171, one clock subsystem will be used for real-time correction of the laser phase during the interrogation of the other clock subsystem via ‘mid-circuit’ operations, enabling nearly a 10-times extension beyond the laser coherence time. This work merges the capabilities of neutral-atom quantum computers, optical atomic clocks, and quantum networking devices into one system. It will thus lead to advances of broad societal impact such as fault-tolerant quantum processors as well as quantum networks of optical atomic clocks that can provide quantum-secured timekeeping and the ability to search for new physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学原子钟是人类最精确的测量工具,分数不稳定性在10^-18水平。这相当于在整个宇宙年龄中损失不到一秒。这样的精确度不仅可以实现令人难以置信的计时精度,还可以促进对可能影响时间流逝的现象的研究,例如引力,暗物质和基本常数的变化。对未来几代光学原子钟的研究重点是进一步提高准确度和/或允许在现实环境中运行的部署系统中实现相当的准确度。这项工作将借鉴量子信息科学的工具箱,通过使用量子纠错中发现的实时措施和使用可编程纠缠生成来提高光学时钟的资源效率。这项研究将为本科生和研究生提供精密计量和原子量子科学的实践经验。这种经验,沿着课程创新和向更广泛的社区推广,将有助于促进美国量子劳动力的增长和多样性。光学时钟的工作原理涉及将亚Hz线宽激光振荡器与超窄原子跃迁进行比较,以校正其频率波动和漂移。时钟性能的主要限制来自(1)激光振荡器的基线稳定性,以及(2)校正激光频率波动所需的原子资源,其精度受到量子测量的投影性质的阻碍。这项工作旨在解决这两个问题,使两个原子阵列光学时钟在同一设备内的独立操作,并通过使用光学腔工程自旋压缩,减轻投影噪声。具体而言,通过勒韦林的丰富原子结构,一个时钟子系统将用于在通过“中间电路”操作询问另一时钟子系统期间实时校正激光相位,从而能够实现超过激光相干时间的近10倍的延长。这项工作将中性原子量子计算机,光学原子钟和量子网络设备的功能合并到一个系统中。因此,它将带来具有广泛社会影响的进步,如容错量子处理器以及光学原子钟的量子网络,这些网络可以提供量子安全计时和搜索新物理的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Covey其他文献
System-on-a-Chip Design as a Platform for Teaching Design and Design Flow Integration
片上系统设计作为设计教学和设计流程集成的平台
- DOI:
10.1145/3299874.3318000 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jacob Covey;Mark C. Johnson - 通讯作者:
Mark C. Johnson
Jacob Covey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Covey', 18)}}的其他基金
Distributed Quantum Computing and Metrology with Alkaline Earth Atom Arrays
碱土原子阵列的分布式量子计算和计量
- 批准号:
2112663 - 财政年份:2021
- 资助金额:
$ 68.13万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: High-performance Optical-phonon-based Terahertz Sources Operating at Room Temperature
EAGER:在室温下运行的基于光学声子的高性能太赫兹源
- 批准号:
1748518 - 财政年份:2017
- 资助金额:
$ 68.13万 - 项目类别:
Standard Grant
Optical and chemical analyses of the influence of engine operating conditions on the characteristics of soot and ash deposits in diesel particulate filters
发动机运行条件对柴油颗粒过滤器中烟灰和灰烬沉积物特性影响的光学和化学分析
- 批准号:
289214012 - 财政年份:2016
- 资助金额:
$ 68.13万 - 项目类别:
Research Grants
Development of optical modulation devices operating in THz-band using meta-material structuers
使用超材料结构开发太赫兹频段的光调制器件
- 批准号:
15H03994 - 财政年份:2015
- 资助金额:
$ 68.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Maximising throughput in multiwavelength optical networks operating in nonlinear regime
最大化非线性状态下运行的多波长光网络的吞吐量
- 批准号:
1673366 - 财政年份:2015
- 资助金额:
$ 68.13万 - 项目类别:
Studentship
Millimeter Wave MIMO for Emerging Wireless Communication Systems Operating at Quasi Optical Speeds
用于以准光速运行的新兴无线通信系统的毫米波 MIMO
- 批准号:
413368-2011 - 财政年份:2013
- 资助金额:
$ 68.13万 - 项目类别:
Strategic Projects - Group
Millimeter Wave MIMO for Emerging Wireless Communication Systems Operating at Quasi Optical Speeds
用于以准光速运行的新兴无线通信系统的毫米波 MIMO
- 批准号:
413368-2011 - 财政年份:2012
- 资助金额:
$ 68.13万 - 项目类别:
Strategic Projects - Group
Innovative Middleware and Embedded Operating System Support for a Network Element Manager in Long-Haul Optical Communications Equipment
为长途光通信设备中的网络元件管理器提供创新的中间件和嵌入式操作系统支持
- 批准号:
429044-2011 - 财政年份:2011
- 资助金额:
$ 68.13万 - 项目类别:
Engage Grants Program
Millimeter Wave MIMO for Emerging Wireless Communication Systems Operating at Quasi Optical Speeds
用于以准光速运行的新兴无线通信系统的毫米波 MIMO
- 批准号:
413368-2011 - 财政年份:2011
- 资助金额:
$ 68.13万 - 项目类别:
Strategic Projects - Group
Study of Optical Switches Operating at Ultra-Low Voltages Using Magneto-Optic Photonic Crystals
利用磁光光子晶体在超低电压下工作的光开关的研究
- 批准号:
22656084 - 财政年份:2010
- 资助金额:
$ 68.13万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Multi-bit polarization bistable optical memory operating in the optical fiber transmission wavelength range
工作在光纤传输波长范围内的多位偏振双稳态光存储器
- 批准号:
21360034 - 财政年份:2009
- 资助金额:
$ 68.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)