CAREER: Elucidating trans-kingdom horizontal gene transfer mechanisms to improve plant genetic engineering

职业:阐明跨界水平基因转移机制以改进植物基因工程

基本信息

  • 批准号:
    2340175
  • 负责人:
  • 金额:
    $ 82.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

Plants lie at the heart of many potential solutions to the climate crisis. Yet, it can take years to develop plants with new, useful features. Plant transformation and negative public opinion are widely recognized as the main bottlenecks to engineering new plant varieties. This team will pursue an integrated research and education plan to spur innovation in plant genetic engineering. The research will generate foundational knowledge related trans-kingdom DNA transfer between Agrobacterium and plants, which will be used to develop plant transformation tools that improve the speed and complexity of genetic manipulation achievable in plants. In parallel, the PI will develop a summer program for students enrolled in their National Education Equity Lab course: BIOE80 “Introduction to Bioengineering.” The PI already works with the National Education Equity lab – a non-profit that provides low-income (Title 1) high school students with an opportunity to earn free college credits by taking college courses from college professors. The proposed summer addition to BIOE80 will give students an opportunity to gain hands-on experience with the genetic engineering techniques learned in their lecture-based course. It will serve as much needed bridge between the students’ theoretical understanding of bioengineering concepts and the research experience needed to pursue internships and higher education in STEM field. Ultimately, the course and proposed research should strengthen U.S. plant engineering discourse and research should help more fully realize the potential of plant biotechnology for a sustainable future.Trans-kingdom transfer of DNA from Agrobacterium to plants is a stunning biological feat and the basis of powerful plant biotechnology tools. Despite being the most commonly used tool for introducing new DNA to plants, several important gaps in our understanding of Agrobacterium-mediated DNA transfer remain – including the dynamics and mechanisms of transferred DNA (T-DNA) integration into the plant genome. This knowledge gap has prevented the generation of plant genome engineering tools that can be used to reliably control the insertion location of transgenes in plants’ genomes and limits the speed and complexity of genetic perturbation achievable in plants. The proposed research will investigate the temporal dynamics of T-DNA delivery and T-DNA fate (integration or degradation) in plant cells after the two most common plant transformation procedures: floral dip and in vitro conjugation to callus. The team will use a new synthetic genetic system, developed by the PI, that can record T-DNA delivery to dissect these complex biological processes with unprecedented precision. Then, newly acquired information will be used to create molecular tools for plant genome editing without T-DNA integration. This work will contribute to the bioeconomy by generating the foundational knowledge needed to develop increasingly sophisticated plant genome engineering tools and setting the stage for the long-term goal of precisely engineering plants in order to improve climate resilience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物是许多潜在解决气候危机的核心。但是,开发具有新的有用特征的植物可能需要数年的时间。植物转化和负面舆论被广泛认为是工程新植物变化的主要瓶颈。该团队将制定一项综合研究和教育计划,以刺激植物基因工程的创新。该研究将在农杆菌和植物之间产生与基础知识相关的转化DNA转移,这些DNA将用于开发植物转化工具,以提高植物中可实现的遗传操作的速度和复杂性。同时,PI将针对参加其国家教育公平实验室课程的学生制定夏季计划:Bioe80“生物工程概论”。 PI已经与国家教育权益实验室(National Education Equity Lab)合作,该实验室是一家非营利组织,为低收入(标题1)高中生提供了通过大学教授的大学课程获得免费大学学分的机会。拟议的夏季添加Bioe80将使学生有机会获得基于讲座课程中学到的基因工程技术的动手经验。它将在学生对生物工程概念的理论理解与在STEM领域进行实习和高等教育所需的研究经验之间非常需要桥梁。最终,该课程和拟议的研究应加强美国植物工程的讨论,研究应有助于更充分地实现植物生物技术在可持续未来的潜力。将DNA从农业杆菌到植物的传播转移是一种令人惊叹的生物学壮举,也是强大的植物生物技术工具的基础。尽管是将新DNA引入植物的最常用工具,但我们对农杆菌介导的DNA转移的一些重要差距仍然存在 - 包括转移的DNA(T-DNA)整合到植物基因组中的动力学和机制。这种知识差距阻止了植物基因组工程工具的产生,这些工具可用于可靠地控制植物基因组中翻译的位置,并限制植物中遗传扰动成就的速度和复杂性。拟议的研究将研究植物细胞中T-DNA递送和T-DNA命运(整合或降解)的临时动力学之后,这两个最常见的植物转化程序:花浸和体外结合与愈伤组织。该团队将使用由PI开发的新合成遗传系统,该系统可以记录T-DNA的传递,以以前所未有的精度解剖这些复杂的生物学过程。然后,新获得的信息将用于创建用于植物基因组编辑的分子工具,而无需T-DNA整合。这项工作将通过产生开发越来越复杂的植物基因组工程工具所需的基础知识来为生物经济做出贡献,并为精确工程工厂的长期目标奠定了基础,以提高气候弹性。该奖项反映了NSF的法定任务,并通过使用基金会的知识优点和广泛的criperia criperia来评估,认为NSF的法定任务是通过评估来获得的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Brophy其他文献

Jennifer Brophy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于ABPP-CCR策略阐明栀子苷改善原发性胆汁性胆管炎的机制
  • 批准号:
    82304814
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
鉴定赖氨酸感知受体并阐明其调节代谢内稳态的机制
  • 批准号:
    32371231
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
线粒体DNA损伤的机制阐明及其作为农药亚致死性暴露生物标志物的应用
  • 批准号:
    82373538
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
  • 批准号:
    82273849
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating the functional mechanism of NLRP3 inflammasome activation
阐明NLRP3炎症小体激活的功能机制
  • 批准号:
    10720435
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the Origin of Sudden Cardiac Death in Dilated Cardiomyopathy: from Phenotype Predictors to Therapeutic Targets
阐明扩张型心肌病心脏性猝死的起源:从表型预测因子到治疗靶点
  • 批准号:
    10658201
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the Structural Bases of HIV-1-Induced CD4 Degradation
阐明 HIV-1 诱导的 CD4 降解的结构基础
  • 批准号:
    10698255
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the role of B cell mediated trans infection in the establishment of the latent HIV-1 reservoir
阐明 B 细胞介导的反式感染在潜伏 HIV-1 病毒库建立中的作用
  • 批准号:
    10675438
  • 财政年份:
    2022
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the role of B cell mediated trans infection in the establishment of the latent HIV-1 reservoir
阐明 B 细胞介导的反式感染在潜伏 HIV-1 病毒库建立中的作用
  • 批准号:
    10402053
  • 财政年份:
    2022
  • 资助金额:
    $ 82.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了