CAREER: Digitize and Simulate the Large Physical World via Knowledge-Grounded Scene Representation

职业:通过基于知识的场景表示对大型物理世界进行数字化和模拟

基本信息

  • 批准号:
    2340254
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

Numerous fields, such as agricultural robotics, necessitate that humans and intelligent agents have a shared understanding of the physical world to be able to make informed decisions. This requires that intelligent machines, to effectively assist humans, understand the physical world, simulate various possibilities, and predict and evaluate outcomes. Current computer vision systems, which largely focus on understanding and modeling observed phenomena, fall short of these capabilities. Similarly, domain-specific simulators fail to achieve this goal as they lack real-world grounding. This project aims to construct AI systems capable of creating a digital replica of the large 3D world and faithfully simulating various counterfactual scenarios, thereby enabling users to assess the outcomes of different decisions and actions. Central to this work is an actionable, knowledge-grounded scene representation, facilitating real-world modeling and simulation. The project has the potential to amplify advancements in various disciplines, such as robotics and agriculture. This project aims to achieve this goal via four directions that advance digitizing and simulating the physical world. To achieve this goal, the project offers a framework that will (i) create an actionable scene representation from real-world videos; (ii) infer physical parameters of the digital world from visual observations; (iii) perform physics-grounded simulation over the digital twin that enables the creation of realistic and accurate counterfactuals; and (iv) integrate the digital twin with domain knowledge and modeling for various applications. Based on the research studies, the project will develop a digital twin education platform that can be applied in undergraduate and graduate education, mentoring, and K-12 outreach activities to engage the next generation of researchers in computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多领域,如农业机器人,需要人类和智能代理对物理世界有共同的理解,以便能够做出明智的决策。这就要求智能机器能够有效地帮助人类,理解物理世界,模拟各种可能性,并预测和评估结果。目前的计算机视觉系统主要集中在理解和建模观察到的现象,缺乏这些能力。同样,特定领域的模拟器也无法实现这一目标,因为它们缺乏现实世界的基础。该项目旨在构建能够创建大型3D世界的数字副本并忠实地模拟各种反事实场景的人工智能系统,从而使用户能够评估不同决策和行动的结果。这项工作的核心是一个可操作的,以知识为基础的场景表示,促进现实世界的建模和仿真。该项目有可能扩大各种学科的进步,如机器人和农业。该项目旨在通过推进数字化和模拟物理世界的四个方向来实现这一目标。为了实现这一目标,该项目提供了一个框架,该框架将(i)从真实世界的视频中创建可操作的场景表示;(ii)从视觉观察中推断数字世界的物理参数;(iii)在数字孪生模型上执行基于物理的模拟,从而能够创建逼真和准确的反事实;以及(iv)将数字孪生模型与领域知识和各种应用建模相结合。基于研究成果,该项目将开发一个数字孪生教育平台,可应用于本科生和研究生教育、指导和K-12外展活动,以吸引下一代研究人员参与计算。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shenlong Wang其他文献

Stationary probability densities of generalized Maxwell-type viscoelastic systems under combined harmonic and Gaussian white noise excitations
谐波和高斯白噪声组合激励下广义麦克斯韦型粘弹性系统的平稳概率密度
Learning to Localize Through Compressed Binary Maps
学习通过压缩二进制地图进行本地化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinkai Wei;Ioan Andrei Bârsan;Shenlong Wang;Julieta Martinez;R. Urtasun
  • 通讯作者:
    R. Urtasun
Design and Application of a Bionic Origami Mechanism Based on Adjustable Bistability
  • DOI:
    10.1007/s42235-025-00731-7
  • 发表时间:
    2025-07-03
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Daiwei Yu;Shenlong Wang;Yongge Li
  • 通讯作者:
    Yongge Li
Approximate Analytical Solutions of Reliability for Controlled Single First-Integral Nonlinear Stochastic Systems
受控单一阶积分非线性随机系统可靠性的近似解析解
  • DOI:
    10.1115/1.4042277
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shenlong Wang;Maolin Deng;Shilun Zhao
  • 通讯作者:
    Shilun Zhao
Miura-origami inspired quasi-zero stiffness low-frequency vibration isolator
三浦折纸启发的准零刚度低频隔振器
  • DOI:
    10.1016/j.ijmecsci.2025.110283
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Xiaodong Hua;Shenlong Wang;Jincheng Zhang;Guyue Jiao;Kai Wang
  • 通讯作者:
    Kai Wang

Shenlong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SBIR Phase I: Using Deep Learning and Action Recognition to Automatically Digitize Human Actions at Scale: Putting Workers at the Center of the Next Industrial Revolution
SBIR 第一阶段:利用深度学习和动作识别大规模自动数字化人类行为:将工人置于下一次工业革命的中心
  • 批准号:
    1746113
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Digitisation / Cataloguing of non-textual objects: Standardisation and new methods to digitize wet-preserved arthropods (DifA)
非文本对象的数字化/编目:湿保存节肢动物数字化的标准化和新方法(DifA)
  • 批准号:
    247815257
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Cataloguing and Digitisation (Scientific Library Services and Information Systems)
CSBR: Natural History Collections: Support for the AMNH Invertebrate Paleontology Collection; Addressing a critical need to conserve and digitize the Microfossil Collection
CSBR:自然历史馆藏:支持 AMNH 无脊椎动物古生物学馆藏;
  • 批准号:
    1203394
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Digitize outputs
数字化输出
  • 批准号:
    372661-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 60万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Virtual Types: A Project to Digitize Specimen Data and Image the Types and Authentic Specimens at the Herbarium of the Academy of Natural Sciences (PH)
虚拟类型:自然科学院植物标本馆 (PH) 标本数据数字化和类型及真实标本成像项目
  • 批准号:
    0545170
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了