CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities

职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展

基本信息

  • 批准号:
    2340918
  • 负责人:
  • 金额:
    $ 72.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL ABSTRACTThe next generation of faster, more efficient, and densified functional devices require solid state building blocks that have sizes that approach the atomic scale. Inorganic one-dimensional (1D) solids that crystallize as fiber-like bundles bearing single chains with thicknesses less than a nanometer gained recent attention due to their high degrees of conductivity and strong absorption characteristics that make them suitable for energy-efficient electronic and photonic devices. However, while promising, there is meager understanding of the synthetic methodologies to control the nanoscale morphology, size, and physical properties of these 1D solids. With this CAREER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, the principal investigator and his research group will elucidate the chemical cues that precisely direct and influence the crystallization of these 1D inorganic fibers into nanoscale crystals with various sizes and dimensionalities. The resulting array of dimensionally resolved nanostructures is used to systematically establish how the optical properties evolve from the bulk down to ultrathin nanostructures. It is anticipated that these strategies are translatable to several classes solids that display 1D fiber-like motif, poised as ultrathin building blocks in quantum computing, microelectronics, energy, and sensing technologies. The unique nature of these materials which bridge bulk and nanoscale solids presents an ideal platform to train budding scientists. Students across multiple levels are introduced to synthetic and characterization techniques, as well as the practical applications, which involve solid state materials through complementary hands-on demonstration, summer bootcamp, and mentorship activities.TECHNICAL ABSTRACTThe discovery of complex phenomena and strongly correlated behavior in the solid state has relied on the precise sculpting of solids into stable low-dimensional crystals approaching the atomic limit. Whereas 2D van der Waals (vdW) solids are well studied, little is known about the chemistry and physics of the more confined 1D/quasi-1D (q-1D) vdW counterparts. In these length scales and dimensionalities, unique physical properties arising from finite size effects like ballistic electrical transport, size-dependent optical resonance modes, long carrier lifetimes, and 1D excitonics become realizable. With this CAREER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, the principal investigator and his research group addresses the chemical knowledge gap by elucidating the chemical cues that, first, direct the assembly of 1D/q-1D vdW chain sub-units into well-defined nanostructures (as nanowire, nanoribbon, or nanosheet) and, second, control and alter the electronic band structures and photophysical properties of the resulting nanocrystals. The overarching hypothesis is that the control over the degree of anisotropic inter-chain vdW interactions enables the precise nanocrystalline dimensional resolution which, in turn, could improve the optoelectronic properties of bottom-up grown 1D/q-1D vdW nanostructures. The specific objectives, which involve pnictogen- and chalcogen-based 1D/q-1D vdW crystals, are: (1) establish the intrinsic chemical interactions governing anisotropic bonding, structure, and nanoscale growth habits from vapor phase precursors; (2) identify extrinsically directed growth pathways to control morphologies and sizes in 1D/q-1D vdW nanostructures through engineered nucleation, flux control, and catalyzed growth routes in a chemical vapor deposition system; and (3) mechanistically elucidate vapor phase intra- and inter-chain growth pathways that lead to dimensionally resolved 1D/q-1D vdW nanocrystals with modulable photophysical properties via hierarchical assembly and heterostructuring. The unique structure and properties of these low-dimensional solids facilitate the development of educational activities introduce the chemistry, properties, and applications of both bulk and nanoscale solid state materials to students across various levels, including a solid state and nano-chemistry bootcamp and mentoring program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要下一代的更快,更高效,更致密的功能设备需要固态构建块,该构建块具有接近原子量表的大小。无机的一维(1D)固体,由于具有高度的电导率和强大的滥用特性,其厚度小于纳米的单个链的纤维样捆,其厚度小于近期注意力,从而使它们适合能量效率的电子和光子设备。但是,尽管有望,但对控制这些1D固体的纳米级形态,大小和物理特性的合成方法有很小的了解。在NSF材料研究部的固态和材料化学计划的支持下,首席研究员及其研究小组的支持,将阐明这些1D无机纤维将这些1D无机纤维结晶列入具有各种尺寸和尺寸的纳米级晶体的化学线索。所得的尺寸分辨纳米结构的阵列用于系统地确定光学特性如何从散装向下变为超薄纳米结构。可以预料,这些策略可以翻译成几类固体,这些固体显示了1D纤维样基序,在量子计算,微电子,能量,能量和灵敏度技术中被中毒为超薄构建块。这些材料的独特性质桥梁和纳米级固体是培训萌芽科学家的理想平台。 Students across multiple levels are introduced to synthetic and characterization techniques, as well as the practical applications, which involve solid state materials through complementary hands-on demonstration, summer bootcamp, and mentalship activities.TECHNICAL ABSTRACTThe Discovery of complex phenomena and strongly correlated behavior in the solid state has relied on the precise sculpting of solids into stable low-dimensional crystals approaching the atomic limit. 2D Van der Waals(VDW)固体是研究良好的,但对更牢固的1D/Quasi-1d(Q-1D)VDW对应物的化学和物理学知之甚少。在这些长度尺度和尺寸上,由有限尺寸效应产生的独特物理特性,例如弹道电动传输,尺寸依赖性的光学共振模式,较长的载体寿命和1D兴奋性。在NSF材料研究部的固态和材料化学计划的支持下,主要研究人员及其研究小组通过阐明化学知识差距来解决化学知识差距,该化学线索首先指导1D/Q-1D VDW链条子组装到良好定义的纳米结构(或NananoSeet,或Nananoseeet and Nananoseeet and Nananoseed),以解决化学知识差距,或产生的纳米晶体的光物理特性。总体假设是,对各向异性链间VDW相互作用的控制能够确切的纳米晶体尺寸分辨率,这反过来又可以改善自下而上成长的1D/Q-1D/Q-1D VDW纳米结构的光电特性。涉及基于PNICTOGEN和CHALCOGON的1D/Q-1D VDW晶体的特定目标是:(1)建立涉及各向异性粘结,结构和纳米级生长习惯的内在化学相互作用。 (2)通过工程核能,通量控制和化学蒸气沉积系统中的催化生长途径来确定在1D/Q-1D VDW纳米结构中控制形态和大小的外在定向的生长途径; (3)机械学阐明蒸汽相内部和链间生长途径,从而通过层次组件和异质结构导致具有模块化光物理特性的尺寸解析的1D/Q-1D VDW纳米晶体。这些低维固体的独特结构和特性促进了教育活动的发展,介绍了批量和纳米级固态对各个层面的学生的化学,特性和应用,包括固态和纳米化学的训练营和心理计划。这一奖项通过评估了NSF的法规委员会的范围,这表明了这一奖项的范围,这是通过评估良好的范围,这是通过评估的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maxx Arguilla其他文献

Maxx Arguilla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

非线性耦合问题的各向异性高精度有限元方法新模式研究
  • 批准号:
    12301474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于增材制造吸能点阵材料的各向异性冲击响应研究及调控设计
  • 批准号:
    12302475
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
各向异性复合材料微通道内碳氢燃料的流动换热机理研究
  • 批准号:
    52302478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
晋冀交界地区地幔包体变形组构与地震波各向异性的关系及对华北克拉通破坏的启示
  • 批准号:
    42304106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单轴各向异性介质中电磁散射问题快速求解算法
  • 批准号:
    12371394
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
  • 批准号:
    10750473
  • 财政年份:
    2023
  • 资助金额:
    $ 72.68万
  • 项目类别:
Shu complex and RAD52 function in DNA damage recognition and subsequent repair
Shu 复合物和 RAD52 在 DNA 损伤识别和后续修复中发挥作用
  • 批准号:
    10864084
  • 财政年份:
    2023
  • 资助金额:
    $ 72.68万
  • 项目类别:
Integration of heme acquisition and signaling in Gram-negative pathogens
革兰氏阴性病原体中血红素获取和信号传导的整合
  • 批准号:
    10378657
  • 财政年份:
    2021
  • 资助金额:
    $ 72.68万
  • 项目类别:
Structure-based targeting of the C. difficile toxin (CDT) from hypervirulent bacterial strains
基于结构的高毒力细菌菌株中艰难梭菌毒素 (CDT) 的靶向
  • 批准号:
    10455150
  • 财政年份:
    2021
  • 资助金额:
    $ 72.68万
  • 项目类别:
Integration of heme acquisition and signaling in Gram-negative pathogens
革兰氏阴性病原体中血红素获取和信号传导的整合
  • 批准号:
    10591561
  • 财政年份:
    2021
  • 资助金额:
    $ 72.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了