CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
基本信息
- 批准号:2340993
- 负责人:
- 金额:$ 65.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-15 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Catalysts have long been used to enhance the rate of chemical reactions, improve energy efficiency, and direct reactions toward desired products. Zeolites are a class of nanoporous solid-acid catalysts that are particularly well suited to reactions of hydrocarbons derived from natural gas and petroleum resources. The transition from fossil-based resources to bio-renewable feedstocks in recent years has triggered interest in modifying zeolites and other microporous catalysts to increase their effectiveness for reacting raw biomass molecules to higher-value fuels and chemicals. The project investigates a novel approach for modifying acid catalysts that involves promoting reaction rates through confinement in tight spaces while facilitating diffusion of bulky product molecules away from the active sites. The approach utilizes a molecular imprinting atomic layer deposition method to create microporous silica structures near the active sites to induce confinement effects without imposing transport constraints. These solid acids catalysts with tunable porous structures will be tested for their effectiveness and stability in aromatic alkylation and aldol condensation reactions, chosen because of their widespread application in industrial chemistry and in upgrading biomass-derived molecules. The project will involve strong coupling between research and education by integrating the research results into classroom materials, providing research opportunities for students from historically underrepresented groups in STEM, showcasing the investigator’s laboratories to local K-12 female students, and creating and broadcasting educational videos via social media channels for researchers who are new to heterogeneous catalysis research.Over the last two decades, the field has made significant progress in understanding the effects of reaction network, kinetics, and transport on observed rates, selectivities, and stabilities, on chemistries occurring on confined spaces such as microporous acidic zeolites. Yet, the three-dimensional network of microporous structures in zeolitic materials often introduces unwanted transport effects that can lead to undesired side reactions and catalyst deactivation caused by pore blockage. This project aims to add another dimension in rationally designing porous materials by developing and implementing molecular imprinting atomic layer deposition methods to create microporous SiO2 architecture near active sites in mesoporous aluminosilicates to induce confinement effects without imposing transport constraints. These solid acids with tunable porous structures will be used to assess their detailed role on observed rates, selectivities, and stabilities by combining kinetic, spectroscopic, and theoretical methods. In doing so, this proposal aims to provide comprehensive catalyst design principles for active site manipulation that match the specific requirements of C-C coupling chemistries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
长期以来,催化剂一直被用于提高化学反应的速率,提高能源效率,并将反应导向所需的产物。 沸石是一类纳米多孔固体酸催化剂,其特别适合于衍生自天然气和石油资源的烃的反应。 近年来,从化石基资源向生物可再生原料的转变引发了对改性沸石和其他微孔催化剂的兴趣,以提高其将原始生物质分子反应为更高价值燃料和化学品的有效性。 该项目研究了一种用于改性酸催化剂的新方法,该方法涉及通过限制在紧密空间中来促进反应速率,同时促进大体积产物分子远离活性位点的扩散。 该方法利用分子印迹原子层沉积方法在活性位点附近产生微孔二氧化硅结构,以诱导限制效应而不施加传输约束。这些具有可调多孔结构的固体酸催化剂将被测试其在芳族烷基化和羟醛缩合反应中的有效性和稳定性,选择这些催化剂是因为它们在工业化学和升级生物质衍生分子中的广泛应用。该项目将通过将研究成果整合到课堂材料中,为STEM历史上代表性不足的群体的学生提供研究机会,向当地K-12女学生展示研究人员的实验室,以及通过社交媒体渠道为新加入多相催化研究的研究人员创建和播放教育视频,从而实现研究与教育之间的强耦合。在过去的二十年中,本领域在理解反应网络、动力学和传输对所观察到的速率、选择性和稳定性的影响,对在有限空间如微孔酸性沸石上发生的化学反应的影响方面取得了显著的进展。然而,沸石材料中微孔结构的三维网络通常引入不希望的传输效应,其可导致不希望的副反应和由孔堵塞引起的催化剂失活。该项目旨在通过开发和实施分子印迹原子层沉积方法来合理设计多孔材料,以在介孔硅铝酸盐中的活性位点附近创建微孔SiO2结构,从而在不施加传输约束的情况下诱导限制效应。这些固体酸与可调的多孔结构将被用来评估其详细的作用,所观察到的速率,选择性和稳定性相结合的动力学,光谱和理论方法。在此过程中,该提案旨在为活性位点操作提供全面的催化剂设计原则,以满足C-C偶联化学的特定要求。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Kwon其他文献
Theoretical assessments of COsub2/sub activation and hydrogenation pathways on transition-metal surfaces
过渡金属表面上二氧化碳活化和加氢途径的理论评估
- DOI:
10.1016/j.apsusc.2023.157873 - 发表时间:
2023-11-15 - 期刊:
- 影响因子:6.900
- 作者:
Michelle A. Nolen;Sean A. Tacey;Stephanie Kwon;Carrie A. Farberow - 通讯作者:
Carrie A. Farberow
Mechanistic and kinetic relevance of hydrogen and water in COsub2/sub hydrogenation on Cu-based catalysts
铜基催化剂上二氧化碳加氢中氢气和水的机理与动力学相关性
- DOI:
10.1016/j.jcat.2024.115936 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.500
- 作者:
Ting C. Lin;Michelle A. Nolen;Carrie A. Farberow;Stephanie Kwon;Aditya Bhan - 通讯作者:
Aditya Bhan
Stephanie Kwon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Molecular determinants of sex-specific DNA methylation signature acquisition in the mammalian germline
哺乳动物种系中性别特异性 DNA 甲基化特征获取的分子决定因素
- 批准号:
10723071 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Directed Molecular Recognition through Next-Generation Hybrid Molecular Imprinting
通过下一代混合分子印迹进行定向分子识别
- 批准号:
EP/V046594/2 - 财政年份:2023
- 资助金额:
$ 65.68万 - 项目类别:
Research Grant
Identifying Molecular Signatures of Genomic Imprinting Errors
识别基因组印记错误的分子特征
- 批准号:
10595043 - 财政年份:2022
- 资助金额:
$ 65.68万 - 项目类别:
Identifying Molecular Signatures of Genomic Imprinting Errors
识别基因组印记错误的分子特征
- 批准号:
10445832 - 财政年份:2022
- 资助金额:
$ 65.68万 - 项目类别:
Investigating molecular mechanisms and cellular functions of genomic imprinting
研究基因组印记的分子机制和细胞功能
- 批准号:
10672309 - 财政年份:2022
- 资助金额:
$ 65.68万 - 项目类别:
Directed Molecular Recognition through Next-Generation Hybrid Molecular Imprinting
通过下一代混合分子印迹进行定向分子识别
- 批准号:
EP/V046594/1 - 财政年份:2021
- 资助金额:
$ 65.68万 - 项目类别:
Research Grant
Molecular and computational tools for investigating genomic imprinting
用于研究基因组印记的分子和计算工具
- 批准号:
RGPIN-2016-03911 - 财政年份:2021
- 资助金额:
$ 65.68万 - 项目类别:
Discovery Grants Program - Individual
Molecular mechanisms by which aberrant hypermethylation expands beyond boundaries in Imprinting diseases
印迹疾病中异常高甲基化超出界限的分子机制
- 批准号:
21K19451 - 财政年份:2021
- 资助金额:
$ 65.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Directed Molecular Recognition through Next-Generation Hybrid Molecular Imprinting
通过下一代混合分子印迹进行定向分子识别
- 批准号:
EP/V040278/1 - 财政年份:2021
- 资助金额:
$ 65.68万 - 项目类别:
Research Grant
Molecular Basis of Gene Regulation by Polycomb Repressive Complex 2
Polycomb 抑制复合物 2 基因调控的分子基础
- 批准号:
10373974 - 财政年份:2020
- 资助金额:
$ 65.68万 - 项目类别: