CAREER: Interpretable Provenance Analysis for Heterogeneous Systems at Scale
职业:大规模异构系统的可解释来源分析
基本信息
- 批准号:2342250
- 负责人:
- 金额:$ 53.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The number of cybercrime incidents and the complexity of modern attacks are increasing, making forensics analysis more challenging. Provenance analysis is a common practice for forensics analysis tasks that record historical system execution events and convert them into causal graphs following the dependencies among events. Investigators can identify attack root causes and induced damages from such graphs and leverage learned knowledge for attack detection or security enforcement. The project’s novelties are a scalable and interpretable provenance collection software for heterogeneous systems consisting of cutting-edge artificial intelligence components. The project's broader significance and importance are building the foundation for reasoning about the opaqueness of modern complex systems and training research and security analysis skills of students and security professionals. Due to the provenance collection software practicality, the developed techniques improve modern computing systems’ resilience to cyber-attacks. The attack traces generated by this project, including the labeled and cleansed ones, will support further research in multiple areas, such as cyber security and big-data analysis.Specifically, the project develops a scalable provenance collection system by designing a new system architecture that coordinates individual kernel components. It optimizes the provenance storage system by introducing a novel lossless compression schema. On top of these frameworks, the project builds interpretable provenance analysis and on-the-fly attack detection methods through program analysis-enabled semantic labeling and artificial intelligence-based behavior analysis. The training methods provide new capabilities in learning from the highly biased and unlabeled audit data that are at a scale exceeding most existing data-driven applications. The project team also devises novel causality analysis mechanisms for deep neural network modules in emerging heterogeneous systems. This technique improves model interpretability in the presence of an attack, especially for models used in critical missions such as auto-driving, identity recognition, and private property surveillance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络犯罪事件的数量和现代攻击的复杂性正在增加,使取证分析更具挑战性。起源分析是取证分析任务的常见实践,记录历史系统执行事件并将其转换为事件之间依赖关系的因果图。调查人员可以从这些图表中识别攻击的根本原因和诱发的损害,并利用学到的知识进行攻击检测或安全执行。该项目的新颖之处是一个可扩展和可解释的出处收集软件,用于由尖端人工智能组件组成的异构系统。该项目的更广泛的意义和重要性是为推理现代复杂系统的不透明性奠定基础,并培养学生和安全专业人员的研究和安全分析技能。由于出处收集软件的实用性,所开发的技术提高了现代计算系统对网络攻击的弹性。该项目生成的攻击痕迹,包括标记和清理的痕迹,将支持网络安全和大数据分析等多个领域的进一步研究。具体来说,该项目通过设计一种新的系统架构来协调各个内核组件,从而开发一个可扩展的来源收集系统。它通过引入一种新的无损压缩方案来优化出处存储系统。在这些框架之上,该项目通过支持程序分析的语义标记和基于人工智能的行为分析,构建了可解释的起源分析和动态攻击检测方法。训练方法提供了从高度偏见和未标记的审计数据中学习的新能力,这些数据的规模超过了大多数现有的数据驱动应用程序。该项目团队还为新兴异构系统中的深度神经网络模块设计了新颖的因果关系分析机制。该技术提高了模型在攻击情况下的可解释性,特别是用于自动驾驶、身份识别和私人财产监视等关键任务的模型。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiqing Ma其他文献
O D S CAN : Backdoor Scanning for Object Detection Models
O D S CAN:目标检测模型的后门扫描
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Siyuan Cheng;Guangyu Shen;Guanhong Tao;Kaiyuan Zhang;Zhuo Zhang;Shengwei An;Xiangzhe Xu;Yingqi Liu;Shiqing Ma;Xiangyu Zhang - 通讯作者:
Xiangyu Zhang
How to Detect Unauthorized Data Usages in Text-to-image Diffusion Models
如何检测文本到图像扩散模型中未经授权的数据使用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhenting Wang;Chen Chen;Yuchen Liu;L. Lyu;Dimitris N. Metaxas;Shiqing Ma - 通讯作者:
Shiqing Ma
Programming support for autonomizing software
自动化软件的编程支持
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Wen;Peng Liu;Yingqi Liu;Shiqing Ma;X. Zhang - 通讯作者:
X. Zhang
45‐3:
Late‐News Paper:
Homogeneous Alignment LCDs Could be Prime Candidate for Multiple Scene Interactive Interface and Devices
45-3:最新新闻论文:同质对准 LCD 可能是多场景交互界面和设备的主要候选者
- DOI:
10.1002/sdtp.13954 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ruizhi Yang;Y. Yang;Wu Jun;Shiqing Ma;Guang Yan;Shi Guangdong;Qu Lianjie;Xiaoling Xu;Hebin Zhao;Qiu Yun;Dan Wang - 通讯作者:
Dan Wang
Ligand free synthesis of atomically dispersed Cu doping ultrathin Cssub3/subBisub2/subBrsub9/sub for efficient photoreduction COsub2/sub with high CO selectivity
无配体合成原子分散的铜掺杂超薄 C₃Bi₂Br₉用于高效光催化还原二氧化碳并具有高一氧化碳选择性
- DOI:
10.1016/j.apcatb.2024.124931 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:21.100
- 作者:
Yanmei Feng;Daimei Chen;Min Niu;Yi Zhong;Zetian He;Shiqing Ma;Kaiwen Yuan;Hao Ding;Kangle Lv;Lingling Guo;Weibin Zhang;Minzhi Ma - 通讯作者:
Minzhi Ma
Shiqing Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiqing Ma', 18)}}的其他基金
CAREER: Interpretable Provenance Analysis for Heterogeneous Systems at Scale
职业:大规模异构系统的可解释来源分析
- 批准号:
2238847 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Continuing Grant
相似海外基金
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
- 批准号:
23K24899 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
- 批准号:
24K18602 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Learning Generalizable and Interpretable Embodied AI with Human Priors
职业:利用人类先验学习可概括和可解释的具体人工智能
- 批准号:
2339769 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Continuing Grant
CAREER: Towards Safe and Interpretable Autonomy in Healthcare
职业:迈向医疗保健领域安全且可解释的自主权
- 批准号:
2340139 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Standard Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
- 批准号:
BB/Y008758/1 - 财政年份:2024
- 资助金额:
$ 53.07万 - 项目类别:
Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
- 批准号:
2321840 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
- 批准号:
2239787 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Continuing Grant
AIPPN: Interpretable AI enabled Molecular Identification Pipeline for Plant-parasitic Nematodes
AIPPN:可解释的人工智能支持植物寄生线虫分子识别管道
- 批准号:
10077647 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Collaborative R&D
Interpretable data-driven building energy analytics
可解释的数据驱动的建筑能源分析
- 批准号:
2891094 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Studentship