GENERATING BIODATA FROM SCRATCH: CREATING AND VALIDATING A COMPREHENSIVE COLLECTION OF BIODATA ITEMS AND SCALES
从头开始生成生物数据:创建和验证生物数据项和量表的全面集合
基本信息
- 批准号:2344676
- 负责人:
- 金额:$ 43.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Valid pre-employment tests facilitate hiring qualified employees who perform better at work. Biodata inventories are a type of pre-hire assessment that uses questions about life history and past experiences to effectively evaluate job applicants across a wide range of constructs. Research consistently supports their efficacy in hiring, and yet biodata implementation is hindered by the proprietary nature and restricted availability of biodata questions, alongside insufficient data on individual item and scale properties across work settings. To overcome these challenges, this project leverages natural language processing (NLP) to build the most comprehensive, publicly accessible biodata repository. Paired with a linked work analysis, the repository houses thousands of items across dozens of constructs, including their psychometric properties. This project, therefore, helps democratize biodata and empower users to create tailored biodata scales within organizations, as well as provide rigorous tests of the efficacy of different types of biodata inventories. Moreover, this project will explore biodata’s potential for reducing adverse impact and test bias, addressing a concern in personnel selection.This project begins by crafting prototypical items to assess dozens of work-related constructs. This initial item pool is being expanded by using automated item generation via NLP, paired with researcher refinement and content validity judgments. Data are being gathered for the biodata content, along with work-related dependent variables. Empirical, rational, and hybrid scoring keys are being developed, and a job analysis tool as well to help users identify optimal biodata content and to estimate validity based on the job analysis. Finally, all content are examined for potential group differences to determine susceptibility to adverse impact or statistical test bias. In sum, this research establishes a comprehensive biodata repository paired with an empirical database of reliability, validity, and adverse impact information for biodata scales and items, thus leading to improved hiring methods and expanding biodata knowledge and expertise.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有效的就业前测试有助于雇用在工作中表现更好的合格员工。生物数据清单是一种招聘前评估,它使用有关生活史和过去经验的问题来有效地评估求职者的各种结构。研究始终支持他们在招聘中的功效,但生物数据的实施受到生物数据问题的专有性质和有限可用性的阻碍,以及工作环境中单个项目和规模属性的数据不足。为了克服这些挑战,该项目利用自然语言处理(NLP)来构建最全面,可公开访问的生物数据库。与链接的工作分析配对,存储库包含数十个结构中的数千个项目,包括它们的心理测量属性。因此,这一项目有助于使生物数据民主化,使用户能够在组织内创建量身定制的生物数据量表,并对不同类型的生物数据清单的功效进行严格测试。此外,该项目将探索生物数据减少负面影响和测试偏差的潜力,解决人员选择中的一个问题。该项目首先制作原型项目,以评估数十个与工作相关的结构。这个初始的项目库正在通过使用NLP自动生成项目来扩展,并与研究人员的细化和内容有效性判断相结合。正在为生物数据内容收集数据,沿着与工作有关的因变量。正在开发经验、理性和混合评分键,以及工作分析工具,以帮助用户确定最佳的生物数据内容,并根据工作分析估计有效性。最后,检查所有内容的潜在组差异,以确定对不利影响或统计测试偏差的敏感性。总之,这项研究建立了一个全面的生物数据库与可靠性,有效性和生物数据规模和项目的不利影响信息的经验数据库配对,从而导致改善招聘方法和扩大生物数据知识和专业知识。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Speer其他文献
Improving measurement and prediction in personnel selection through the application of machine learning
通过机器学习的应用改进人员选拔的测量和预测
- DOI:
10.1111/peps.12608 - 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
Nick Koenig;Scott Tonidandel;I. Thompson;Betsy H. Albritton;Farshad Koohifar;Georgi P. Yankov;Andrew Speer;Jay H. Hardy;Carter Gibson;Chris Frost;Mengqiao Liu;Denver McNeney;John Capman;Shane Lowery;M. Kitching;Anjali Nimbkar;Anthony Boyce;Tianjun Sun;Feng Guo;Hanyi Min;Bo Zhang;Logan Lebanoff;Henry Phillips;Charles Newton - 通讯作者:
Charles Newton
178 - CSF HVA/5HIAA ratio is normally distributed in unmedicated and clozapine treated schizophrenics as compared with normal controls
- DOI:
10.1016/s0920-9964(97)82186-x - 发表时间:
1997-01-01 - 期刊:
- 影响因子:
- 作者:
S. Craig Risch;Monica Molloy;Michael Batchelor;Andrew Speer;Richard R.J. Lewine;C.L. DeVane;Mark George - 通讯作者:
Mark George
Andrew Speer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Speer', 18)}}的其他基金
GENERATING BIODATA FROM SCRATCH: CREATING AND VALIDATING A COMPREHENSIVE COLLECTION OF BIODATA ITEMS AND SCALES
从头开始生成生物数据:创建和验证生物数据项和量表的全面集合
- 批准号:
2316813 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
相似海外基金
GENERATING BIODATA FROM SCRATCH: CREATING AND VALIDATING A COMPREHENSIVE COLLECTION OF BIODATA ITEMS AND SCALES
从头开始生成生物数据:创建和验证生物数据项和量表的全面集合
- 批准号:
2316813 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
BioData Catalyst Data Management Core Program
BioData Catalyst 数据管理核心计划
- 批准号:
10607916 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
BioData Catalyst Data Management Core Program
BioData Catalyst 数据管理核心计划
- 批准号:
10902350 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
BioData Catalyst Data Management Core Program
BioData Catalyst 数据管理核心计划
- 批准号:
10936882 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
Personalising Virtual Reality Horror Experiences Using Biodata
使用生物数据个性化虚拟现实恐怖体验
- 批准号:
2603321 - 财政年份:2021
- 资助金额:
$ 43.56万 - 项目类别:
Studentship
The Automatic BioData Scientist: Neural approaches for stoch astic disease modelling
自动生物数据科学家:随机疾病建模的神经方法
- 批准号:
2278917 - 财政年份:2019
- 资助金额:
$ 43.56万 - 项目类别:
Studentship
Biodata Management of Genomics Data from Cancer Cell Lines and Tumors
癌细胞系和肿瘤基因组数据的生物数据管理
- 批准号:
7745591 - 财政年份:2009
- 资助金额:
$ 43.56万 - 项目类别: