Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
基本信息
- 批准号:2344680
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The conference Tensor Invariants in Geometry and Complexity Theory will take place May 13-17, 2024 at Auburn University. This conference aims to bring together early-career researchers and experts to study tensor invariants, their appearance in pure algebraic and differential geometry, and their application in Algebraic Complexity Theory and Quantum Information. The workshop will feature talks from both seasoned experts and promising young researchers. The event is designed to facilitate new research connections and to initiate new collaborations. The conference will expose the participants to state-of-the-art research results that touch a variety of scientific disciplines. The activities will support further development of both pure mathematics and the "down-stream" applications in each area of scientific focus (Algebraic and Differential Geometry, Algebraic Complexity, Quantum Information). The conference is centered on invariants in geometry, divided into three themes: Algebraic and Differential Geometry, Tensors and Complexity, and Quantum Computing and Quantum Information. Geometry has long been a cornerstone of mathematics, and invariants are the linchpins. Regarding Algebraic and Differential Geometry, the organizers are inviting expert speakers on topics such as the connections between projective and differential geometry. Considerations in these areas, such as questions about dimensions and defining equations of secant varieties, have led to powerful tools both within geometry and applications in areas such as computational complexity and quantum information. Likewise, the organizers are inviting application-area experts in Algebraic Complexity and Quantum Information. This natural juxtaposition of pure and applied mathematics will lead to new and interesting connections and help initiate new research collaborations. In addition to daily talks by seasoned experts, the conference will include young researchers in a Poster Session and provide networking opportunities, including working group activities, to help early career researchers meet others in the field, which will provide opportunities for new (and ongoing) research collaborations. It is anticipated that these collaborations will continue long after the meeting is over. The conference webpage is: https://webhome.auburn.edu/~lao0004/jmlConference.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何与复杂性理论中的张量不变量会议将于2024年5月13日至17日在奥本大学举行。这次会议的目的是聚集早期的研究人员和专家来研究张量不变量,它们在纯代数和微分几何中的出现,以及它们在代数复杂性理论和量子信息中的应用。研讨会将有来自经验丰富的专家和有前途的年轻研究人员的演讲。该活动旨在促进新的研究联系和启动新的合作。会议将使与会者接触到涉及各种科学学科的最先进的研究成果。这些活动将支持纯数学和各个科学重点领域(代数和微分几何、代数复杂性、量子信息)的“下游”应用程序的进一步发展。会议集中讨论几何中的不变量,分为三个主题:代数和微分几何,张量和复杂性,以及量子计算和量子信息。几何长期以来一直是数学的基石,而不变量是关键。关于代数和微分几何,组织者将邀请专家就射影几何和微分几何之间的联系等主题发表演讲。在这些领域的考虑,例如关于维度的问题和定义割变数的方程,已经导致了在几何学和诸如计算复杂性和量子信息等领域的应用中的强大工具。同样,组织者也邀请了代数复杂性和量子信息方面的应用领域专家。这种纯数学和应用数学的自然并列将导致新的和有趣的联系,并有助于启动新的研究合作。除了经验丰富的专家的日常演讲外,会议还将邀请年轻研究人员参加海报会议,并提供联网机会,包括工作组活动,以帮助早期职业研究人员与该领域的其他人见面,这将为新的(和正在进行的)研究合作提供机会。预计这些合作将在会议结束后很长时间内继续进行。会议的网页是:https://webhome.auburn.edu/~lao0004/jmlConference.html.This奖反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luke Oeding其他文献
Border Ranks of Monomials
- DOI:
- 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Luke Oeding - 通讯作者:
Luke Oeding
Set-theoretic defining equations of the variety of principal minors of symmetric matrices
- DOI:
10.2140/ant.2011.5.75 - 发表时间:
2008-09 - 期刊:
- 影响因子:1.3
- 作者:
Luke Oeding - 通讯作者:
Luke Oeding
Secant varieties of P2 × Pn embedded by O(1, 2)
由 O(1, 2) 嵌入的 P2 × Pn 的割线簇
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dustin Cartwright;Daniel Erman;Luke Oeding - 通讯作者:
Luke Oeding
Secant Cumulants and Toric Geometry
割线累积量和环面几何
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Michałek;Luke Oeding;Piotr Zwiernik - 通讯作者:
Piotr Zwiernik
Secant varieties of ℙ2 × ℙn embedded by ?(1, 2)
ℙ2 × ℙn 的割线簇嵌入 ?(1, 2)
- DOI:
10.1112/jlms/jdr038 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Dustin A. Cartwright;D. Erman;Luke Oeding - 通讯作者:
Luke Oeding
Luke Oeding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luke Oeding', 18)}}的其他基金
CBMS Conference: Tensors and Their Uses in Approximation Theory, Quantum Information Theory, and Geometry
CBMS 会议:张量及其在逼近论、量子信息论和几何中的应用
- 批准号:
1642659 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
International Research Fellowship Program: Secant Varieties and Applications to Signal Processing
国际研究奖学金计划:割线品种及其在信号处理中的应用
- 批准号:
0853000 - 财政年份:2009
- 资助金额:
$ 4万 - 项目类别:
Fellowship Award
相似国自然基金
基于Tensor Train分解的两类张量优化问题的研究及其应用
- 批准号:11701132
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Integrability and tensor invariants in dynamics
动力学中的可积性和张量不变量
- 批准号:
138339-2010 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Integrability and tensor invariants in dynamics
动力学中的可积性和张量不变量
- 批准号:
138339-2010 - 财政年份:2013
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Integrability and tensor invariants in dynamics
动力学中的可积性和张量不变量
- 批准号:
138339-2010 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Integrability and tensor invariants in dynamics
动力学中的可积性和张量不变量
- 批准号:
138339-2010 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Integrability and tensor invariants in dynamics
动力学中的可积性和张量不变量
- 批准号:
138339-2010 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Tensor invariants in dynamics
动力学中的张量不变量
- 批准号:
138339-2005 - 财政年份:2009
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Tensor invariants in dynamics
动力学中的张量不变量
- 批准号:
138339-2005 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Tensor invariants in dynamics
动力学中的张量不变量
- 批准号:
138339-2005 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Tensor invariants in dynamics
动力学中的张量不变量
- 批准号:
138339-2005 - 财政年份:2006
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Tensor invariants in dynamics
动力学中的张量不变量
- 批准号:
138339-2005 - 财政年份:2005
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual