Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models

合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径

基本信息

  • 批准号:
    2344690
  • 负责人:
  • 金额:
    $ 41.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

This is a project jointly funded by the National Science Foundation’s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries.It is important to understand how melting ice on the surface of ice sheets, caused by a warming climate, affects the movement of the ice sheets. As the climate warms, melting ice at the surface of ice sheets form ponds of meltwater. In order to have an impact on the movement of the Greenland Ice Sheet, the meltwater must reach and lubricate the bottom of the ice sheet. For example, lakes on the surface of the ice sheet can drain through cracks and reach the bottom of the ice sheet within a few hours. To understand the formation of these cracks and the cause of draining lakes on the Greenland Ice Sheet, we plan to use deep learning, an artificial intelligence algorithm, to find the locations of cracks and draining lakes in satellite imagery. Based on this new dataset, we will use mathematical models to understand the formation of new cracks and their impact on the movement of the ice sheet. Our approach contains an exciting mix of observations and mathematical models. The ability to use artificial intelligence to detect cracks and draining lakes offers opportunities to drive new understandings at the ice-sheet scale. Broader Impacts: This project will support (1) a US-UK collaboration; (2) students and junior scientists; (3) the development of open-source artificial intelligence codes for the Arctic sciences community; (4) the production of a comprehensive and freely available database of the Greenland Ice Sheet cracks and draining lakes; and (5) a community-led mentoring program called COMPACT (COmmunity-led Mentoring Program for Advancing Cryosphere Trainees), which will facilitate multi-mentor networks within the US and UK cryospheric communities for minority doctoral students. Overall, this research will help us understand how ice sheets respond to a changing climate.Meltwater that forms on the surface of the ice sheet can seep through moulins and fractures that connect the surface to the bed, lubricating the bottom of the ice sheet and influencing its dynamics. Surface-to-bed meltwater pathways are prevalent across the Greenland Ice Sheet. However, we currently lack the continent-wide maps of moulins, crevasses, and draining lakes needed to understand the formation of surface-to-bed meltwater pathways. Utilizing deep learning techniques for automated detection and mapping of ice sheet surface features can greatly enhance the glaciology community's capacity to analyze high-resolution satellite imagery, leading to new discoveries. By harnessing deep neural networks, this project aims to generate continent-wide databases of surface features that can be used to mechanistically model the ice sheet conditions that create new surface-to-bed pathways and their impact on ice-sheet dynamics. The ability to scale up feature detection to the ice sheet scale can enrich both remote sensing and modeling communities. This project will foster a US-UK collaboration involving junior principal investigators, postdoctoral researchers, and graduate students. The project aims to develop open-source deep learning code, remote-sensing algorithms, and subglacial hydrology model code for the broader glaciological community. The resulting database of Greenland Ice Sheet surface-to-bed pathway locations and supraglacial lake drainage dates and locations will be made open source. The principal investigators will also collaborate to establish a community-led mentoring program within the US and UK cryospheric community to promote the retention of underrepresented doctoral students and junior faculty/scientists. The societal benefit of this research will be a better understanding of ice sheet processes and an improved ability to predict ice sheet change in a warming climate. Understanding the evolving hydrology of the Greenland Ice Sheet remains an important topic given the unknown, but potentially significant, role that meltwater drainage via hydro-fracture may play in the ice-sheet’s dynamic response to an expanding ablation area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个由国家科学基金会地球科学局(NSF/GEO)和英国国家环境研究委员会(NERC)通过NSF/GEO-NERC牵头机构协议共同资助的项目。该协定允许美国和英国提交一个单一的联合提案,并由该机构进行同行审查,该机构的调查员在预算中所占比例最大。在成功地共同确定一项奖项建议后,每个机构将资助其各自国家机构的科学家的预算比例。重要的是要了解气候变暖导致的冰盖表面的冰融化如何影响冰盖的运动。随着气候变暖,冰盖表面融化的冰形成了融化的水塘。为了对格陵兰冰盖的运动产生影响,融化的水必须到达并润滑冰盖的底部。例如,冰盖表面的湖泊可以通过裂缝排出,并在几个小时内到达冰盖底部。为了了解这些裂缝的形成和格陵兰冰盖上湖泊排水的原因,我们计划使用深度学习,一种人工智能算法,在卫星图像中找到裂缝和排水湖泊的位置。基于这一新的数据集,我们将使用数学模型来了解新裂缝的形成及其对冰盖运动的影响。我们的方法包含了令人兴奋的观察和数学模型的组合。使用人工智能检测裂缝和排水湖泊的能力提供了在冰盖规模上推动新理解的机会。更广泛的影响:该项目将支持(1)美英合作;(2)学生和初级科学家;(3)为北极科学界开发开源人工智能代码;(4)制作一个关于格陵兰冰盖裂缝和排水湖泊的全面且免费可用的数据库;以及(5)一个名为COMPACT(社区主导的冰冻圈学员推进辅导计划)的社区主导辅导计划,该计划将促进美国和英国冰冻圈社区内针对少数族裔博士生的多导师网络。总体而言,这项研究将帮助我们了解冰盖对气候变化的反应。冰盖表面形成的融水可以从连接冰盖表面和床层的山沟和裂缝中渗入,润滑冰盖底部并影响其动态。在格陵兰冰盖上,地表到海床的融水通道非常普遍。然而,我们目前缺乏了解地表到海床融水路径形成所需的整个大陆范围的山丘、裂缝和排水湖的地图。利用深度学习技术对冰盖表面特征进行自动检测和测绘,可以极大地提高冰川学界分析高分辨率卫星图像的能力,从而带来新的发现。通过利用深度神经网络,该项目旨在生成大陆范围的地表特征数据库,这些数据库可用于对冰盖条件进行机械模拟,这些条件创造了新的地表到海床的路径及其对冰盖动力学的影响。将特征检测扩大到冰盖规模的能力可以丰富遥感和建模社区。该项目将促进美英之间的合作,包括初级首席研究人员、博士后研究人员和研究生。该项目旨在为更广泛的冰川学社区开发开放源码的深度学习代码、遥感算法和冰下水文模型代码。由此产生的格陵兰冰盖表面到海床路径位置和冰上湖泊排水日期和位置的数据库将开放源代码。主要研究人员还将合作,在美国和英国的冰冻圈社区内建立一个社区主导的指导计划,以促进代表性不足的博士生和初级教师/科学家的留住。这项研究的社会效益将是更好地理解冰盖过程,并提高在气候变暖时预测冰盖变化的能力。了解格陵兰冰盖不断演变的水文学仍然是一个重要的课题,因为通过水力破裂的融水排水在冰盖对不断扩大的消融区域的动态响应中可能扮演着未知的、但潜在的重要角色。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ching-Yao Lai其他文献

Seasonal changes of mélange thickness coincide with Greenland calving dynamics
混杂层厚度的季节性变化与格陵兰崩解动力学一致
  • DOI:
    10.1038/s41467-024-55241-7
  • 发表时间:
    2025-01-10
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yue Meng;Ching-Yao Lai;Riley Culberg;Michael G. Shahin;Leigh A. Stearns;Justin C. Burton;Kavinda Nissanka
  • 通讯作者:
    Kavinda Nissanka
Fluid-Structure Interactions for Energy and the Environment
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ching-Yao Lai
  • 通讯作者:
    Ching-Yao Lai

Ching-Yao Lai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ching-Yao Lai', 18)}}的其他基金

Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
  • 批准号:
    2235051
  • 财政年份:
    2023
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317938
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334797
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Role of the Overturning Circulation in Carbon Accumulation (ROCCA)
NSFGEO-NERC:合作研究:翻转环流在碳积累中的作用(ROCCA)
  • 批准号:
    2400434
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317937
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Continuing Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 41.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了