I-Corps: Audio Artificial Intelligence Data Platform to Diagnose Respiratory Disease

I-Corps:诊断呼吸系统疾病的音频人工智能数据平台

基本信息

  • 批准号:
    2345293
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a respiratory disease diagnostic using an audio artificial intelligence (AI) algorithm. The proposed technology is designed to be deployed as a smartphone app that would enable patients to self-diagnose COVID-19 and other respiratory diseases (e.g., asthma, tuberculosis, flu, lung cancer), at-home, anonymously, and in seconds through sound analysis of voluntary cough sounds. This software application may improve global health, and prevent future pandemics by changing the landscape of diagnostic testing by bringing at-home, contact-less, low-cost pre-screening for respiratory illness directly to patients. In addition, this also may result in significant cost savings for public health departments and private medical insurers scanning for early detection of diseases in their patient populations. The proposed technology also may be used by pharmaceutical companies to measure the effectiveness of therapies for cough producing illnesses and epidemiologists and researchers could adopt this method to retrieve real-time, anonymized tracking of disease status of large populations.This I-Corps project is based on the development of audio artificial intelligence (AI) algorithms for respiratory disease diagnostics. The proposed technology originates from research resulting in a complex clipping technique to detect COVID-19 from cough sound through audio signal feature extraction and machine learning. The proposed algorithm was trained on cough data collected from polymerase chain reaction (PCR)-tested COVID-19 patients through a series of clinical research studies. This work has shown that it is possible to diagnose COVID-19 from the cough sound alone with reliability similar to antigen testing, at high performance metrics (84% sensitivity, 84% specificity, 0.93 area under the curve (AUC)). It is anticipated that the technology can support robust detection of other diseases (e.g., asthma, tuberculosis, flu, lung cancer) with fewer training data by leveraging AI transfer learning on the massive dataset of cough/speech sounds from 415,406 PCR-tested patients across 20 countries. Additionally, preliminary results show that the complex clipping technique improves classification accuracy of other noises relevant for other contexts (e.g., automatic classification of underwater acoustic noises).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是使用音频人工智能(AI)算法开发呼吸系统疾病诊断。 拟议的技术旨在部署为智能手机应用程序,使患者能够自我诊断COVID-19和其他呼吸道疾病(例如,哮喘、肺结核、流感、肺癌),在家里,匿名,并在几秒钟内通过自愿咳嗽声音的声音分析。该软件应用程序可以改善全球健康,并通过直接为患者提供家庭,非接触,低成本的呼吸道疾病预筛查来改变诊断测试的前景,从而预防未来的流行病。 此外,这也可以为公共卫生部门和私人医疗保险公司节省大量成本,以便在其患者人群中进行早期疾病检测。该技术还可用于制药公司测量咳嗽疾病治疗的有效性,流行病学家和研究人员可以采用这种方法来检索大量人群的实时匿名跟踪疾病状态。这个I-Corps项目是基于开发用于呼吸系统疾病诊断的音频人工智能(AI)算法。所提出的技术源于研究,该研究产生了一种复杂的限幅技术,通过音频信号特征提取和机器学习从咳嗽声中检测COVID-19。通过一系列临床研究,对从聚合酶链反应(PCR)测试的COVID-19患者收集的咳嗽数据进行了训练。这项工作表明,仅从咳嗽声中诊断COVID-19是可能的,其可靠性类似于抗原检测,具有高性能指标(84%的灵敏度,84%的特异性,0.93的曲线下面积(AUC))。预计该技术可以支持对其他疾病(例如,哮喘,肺结核,流感,肺癌),通过利用人工智能迁移学习对来自20个国家的415,406名PCR测试患者的咳嗽/言语声音的大规模数据集进行训练数据较少。此外,初步结果表明,复杂裁剪技术提高了与其他上下文相关的其他噪声的分类准确性(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Les Atlas其他文献

Les Atlas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Les Atlas', 18)}}的其他基金

Presidential Young Investigator Award: Auditory Systems as a Basis for the Processing of Speech by Computer
总统青年研究员奖:听觉系统作为计算机语音处理的基础
  • 批准号:
    8451268
  • 财政年份:
    1985
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

STTR Phase I: Using Audio Analytics and Sensing to Enhance Broiler Chicken Welfare and Performance by Continuously Monitoring Bird Vocalizations
STTR 第一阶段:使用音频分析和传感,通过持续监测鸡的发声来提高肉鸡的福利和性能
  • 批准号:
    2335590
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Diversifying audio description in the Australian digital landscape
澳大利亚数字景观中的多样化音频描述
  • 批准号:
    DP240103045
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
Listening to Nature: Transforming Bioacoustics through Spatial Audio
聆听自然:通过空间音频改变生物声学
  • 批准号:
    DE230101567
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Early Career Researcher Award
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
  • 批准号:
    EP/X032914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
  • 批准号:
    EP/X032981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Challenges in Immersive Audio Technologies
沉浸式音频技术的挑战
  • 批准号:
    EP/X032558/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
I-Corps: Liveness detection and integrity authentication of digital audio
I-Corps:数字音频的活性检测和完整性认证
  • 批准号:
    2309443
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Spatial Audio for Managing Mental Illness (SAMMI)
用于管理精神疾病的空间音频 (SAMMI)
  • 批准号:
    10054650
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Auditioning the Sonosphere: Live Audio Streaming as Expanded Geo-Practice
试听 Sonosphere:实时音频流作为扩展的地理实践
  • 批准号:
    2887383
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
Experiential audio in museum contexts
博物馆环境中的体验式音频
  • 批准号:
    2887433
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了